Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108259

Pathogenesis of shigella diarrhea. Serum anticytotoxin antibody response produced by toxigenic and nontoxigenic Shigella dysenteriae 1.

G T Keusch, M Jacewicz, M M Levine, R B Hornick, and S Kochwa

Find articles by Keusch, G. in: PubMed | Google Scholar

Find articles by Jacewicz, M. in: PubMed | Google Scholar

Find articles by Levine, M. in: PubMed | Google Scholar

Find articles by Hornick, R. in: PubMed | Google Scholar

Find articles by Kochwa, S. in: PubMed | Google Scholar

Published January 1, 1976 - More info

Published in Volume 57, Issue 1 on January 1, 1976
J Clin Invest. 1976;57(1):194–202. https://doi.org/10.1172/JCI108259.
© 1976 The American Society for Clinical Investigation
Published January 1, 1976 - Version history
View PDF
Abstract

The serum antitoxin response to the cytotoxin contained in preparations of Shigella dysenteriae 1 (Shiga's bacillus) exotoxin was studied in natural and experimental infections of man. Natural infection resulted in the rapid appearance of toxin-neutralizing antibody, which disappeared some time between 9 and 18 mo after infection. Experimental infection of human volunteers provided the opportunity to study immunoglobulin class of the antibody in sera obtained serially from 7 to 50 days after infection. Neutralizing antibody was present only in the IgM fraction isolated by sucrose density gradient ultracentrifugation. This was confirmed by the use of solid-phase immunoaffinity chromatography. Even though the time-course and immunoglobulin class of the antitoxin antibody response was similar to that previously observed for anti-O polysaccharide antibody, the biologically active cytotoxin was shown to be highly susceptible to destruction by proteolytic enzymes. Sera from subjects infected with a virulent invasive chlorate-resistant Shiga mutant thought to be "nontoxigenic" also contained antibody which was similarly restricted to the IgM fraction. Biologically active cytotoxin was recovered when this mutant organism was grown in liquid media with controlled ion concentration. The mutant cytotoxin was heat labile, neutralized by antiwild-type cytotoxin antibody, and was separable by isoelectric focusing into two fractions with pI 7.2 and 6.1 like the wild-type toxin. These studies show that cytotoxin antigen is produced during in vivo infection with Shiga bacilli, resulting in a serum antitoxin antibody response. Without explanation is the restriction of the antibody to the IgM class and lack of evidence for an IgG antibody to the protein cytotoxin. Finally, mutant strain 725, previously designated "nontoxigenic," was shown to produce biologically active cytotoxin in vitro and, in experimentally infected volunteers, to result in a serum IgM antibody similar to that observed during infection with the wild-type strain.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 194
page 194
icon of scanned page 195
page 195
icon of scanned page 196
page 196
icon of scanned page 197
page 197
icon of scanned page 198
page 198
icon of scanned page 199
page 199
icon of scanned page 200
page 200
icon of scanned page 201
page 201
icon of scanned page 202
page 202
Version history
  • Version 1 (January 1, 1976): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts