Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108258

Localization of the membrane defect in transepithelial transport of taurine by parallel studies in vivo and in vitro in hypertaurinuric mice.

R W Chesney, C R Scriver, and F Mohyuddin

Find articles by Chesney, R. in: PubMed | Google Scholar

Find articles by Scriver, C. in: PubMed | Google Scholar

Find articles by Mohyuddin, F. in: PubMed | Google Scholar

Published January 1, 1976 - More info

Published in Volume 57, Issue 1 on January 1, 1976
J Clin Invest. 1976;57(1):183–193. https://doi.org/10.1172/JCI108258.
© 1976 The American Society for Clinical Investigation
Published January 1, 1976 - Version history
View PDF
Abstract

We investigated the mechanism of taurinuria in three inbred strains of mice: A/J, a normal taurine excretor (taut+); and two hypertaurinuric (taut-) strains, C57BL/6J and PRO/Re. Plasma taurine is comparable in the three strains (approximately 0.5 mM), but taurinuria is 10-fold greater in taut- animals. Fractional reabsorption of taurine is 0.967 +/- 0.013 (mean +/- SD) in A/J); and 0.839 +/- 0.08 and 0.787 +/- 0.05 in C57BL/6J and PRO/Re, respectively. Taurine concentration in renal cortex intracellular fluid (free of urine contamination) is similar in the three strains. Taurine reabsorption is inhibited by beta-alanine, in taut+ and taut- strains. These in vivo findings reveal residual taurine transport activity in the taut- phenotype and no evidence for impaired efflux at basilar membranes as the cause of impaired taurine reabsorption. Cortex slices provide information about uptake of amino acids at the antiluminal membrane. Taurine behaves as an inert metabolite in mouse kidney cortex slices. Taurine uptake by slices is active and, at less than 1 mM, is greater than normal in taut- slices. Concentration-dependent uptake studies reveal more than one taurine carrier in taut+ and taut- strains. The apparent Km values for uptake below 1 mM are different in taut- and taut+ slices (approximately 0.2 mM and approximately 0.7 mM, respectively); the apparent Km values above 1 mM taurine are similar in taut+ and taut- slices. Efflux from slices in all strains in the same (0.0105-0.0113 mumol-min-1-g-1 wet wt), but taut- tissue retains about 10% more radioactivity over the period of efflux. beta-Alanine is actively metabolized in mouse kidney. Its uptake in the presence of blocked transamination, is greater; its intracellular oxidation is attenuated; and its exchange with intracellular taurine is diminished in taut- slices. These findings indicate impaired beta-amino acid permeation on a low-Km uptake system at the luminal membrane in the taut- phenotype. beta-Amino acids are not reclaimed efficiently either from the innermost luminal pool in cortex slices or from the ultrafiltrate in the tubule lumen in vivo. The former leads to high uptake ratios in vitro, the latter to high clearance rates in vivo. In vitro and in vivo data are thus concordant. This is the first time that a hereditary defect in amino acid transport has been assigned to a specific membrane surface in mammalian kidney.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 183
page 183
icon of scanned page 184
page 184
icon of scanned page 185
page 185
icon of scanned page 186
page 186
icon of scanned page 187
page 187
icon of scanned page 188
page 188
icon of scanned page 189
page 189
icon of scanned page 190
page 190
icon of scanned page 191
page 191
icon of scanned page 192
page 192
icon of scanned page 193
page 193
Version history
  • Version 1 (January 1, 1976): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts