Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Adenylate cyclase of human fat cells. Expression of epinephrrine-sensitive activation revealed by 5'guanylyl-imidodiphosphate.
B Cooper, … , J S Partilla, R I Gregerman
B Cooper, … , J S Partilla, R I Gregerman
Published November 1, 1975
Citation Information: J Clin Invest. 1975;56(5):1350-1353. https://doi.org/10.1172/JCI108214.
View: Text | PDF
Research Article

Adenylate cyclase of human fat cells. Expression of epinephrrine-sensitive activation revealed by 5'guanylyl-imidodiphosphate.

  • Text
  • PDF
Abstract

Although catecholamines stimulate lipolysis in human fat cells, activation by epinephrine of adenylate cyclase in human fat cell membranes is not readily observed. The possible role of guanine nucleotides in this reaction has now been examined with human material. Fat cell ghosts were prepared from subcutaneous fat obtained from patients undergoing elective surgery. Adenylate cyclase was assayed with [alpha-32P]ATP as substrate. Fluoride ion stimulated the enzyme 8.3-fold relative to basal levels, but epinephrine activation of cyclase was not statistically significant. GTP did not allow expression of an epinephrine effect. However, the addition of the GTP analogue, 5'-guanylyl-imidodiphosphate [GMP-P(NH)P], along with epinephrine produced 5.7-fold activation of the enzyme (P less than 0.001). GMP-P(NH)P alone was without stimulatory effect. Comparable augmentation by GMP-P (NH) P of adenylate cyclase activity was seen with isoproterenol, norepinephrine, and epinephrine. Propranolol blocked catecholamine-GMP-P (NH) P stimulation of the enzyme, suggesting that the nucleotide-dependent activation of catecholamine-sensitive adenylate cyclase is mediated by beta-receptors. GMP-P(NH)P may prove useful in allowing in vitro demonstration of additional hormone-sensitive adenylate cyclase systems.

Authors

B Cooper, J S Partilla, R I Gregerman

×

Usage data is cumulative from February 2022 through February 2023.

Usage JCI PMC
Text version 107 0
PDF 21 3
Scanned page 66 0
Citation downloads 20 0
Totals 214 3
Total Views 217
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts