Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108136

The role of iron in the pathogenesis of porphyria cutanea tarda. II. Inhibition of uroporphyrinogen decarboxylase.

J P Kushner, D P Steinmuller, and G R Lee

Find articles by Kushner, J. in: PubMed | Google Scholar

Find articles by Steinmuller, D. in: PubMed | Google Scholar

Find articles by Lee, G. in: PubMed | Google Scholar

Published September 1, 1975 - More info

Published in Volume 56, Issue 3 on September 1, 1975
J Clin Invest. 1975;56(3):661–667. https://doi.org/10.1172/JCI108136.
© 1975 The American Society for Clinical Investigation
Published September 1, 1975 - Version history
View PDF
Abstract

Porphria cutanea tarda is characterized biochemically by excessive hepatic synthesis and urinary excretion of uroporphyrin I and 7-carboxylporphyrins. This pattern of excretion suggest an impaired ability to decarboxylate uroporphyrinogen to the paired ability to decarboxylate uroporphyringen to the 4-carboxyl porphyrinogen, coproporphyrinogen, a reaction catalyzed by the enzyme uroporphyringen decarboxylase. Because clinical evidence has implicated iron in the pathogenesis of porphyria cutanea tarda, these experiments were designed to study the effect of iron on uroporphyrinogen decarboxylase in procine crude liver extracts. Mitochondria-free crude liver extracts were preincubated with ferrous ion and aliquots were assayed for uroporphyrinogen decarboxylase activity. Uroporphyrinogens I and III, the substrates for the decarboxylase assay, were prepared enzymatically from (3H)porphobilinogen. The products of the decarboxylase reaction were identified and quantitated by three methods: (a) extraction into 1.5 N HCl and spectrophotometric quantitation; (b) adsorption onto talc, esterification, paper chromatographic identification, and quantitation by liquid scintillation counting; and (c) adsorption onto talc, esterification, thin-layer chromatographic identification on silica gel, and quantitation by liquid scintillation counting. The thin-layer scinllation method proved most sensitive as it was the only method which accurately identified and quantitated the 7-carboxyl porphyrin reaction product. Uroporphyrinogens I and III were decarboxylated at the same rate by porcine hepatic uroporphyrinogen decarboxylase, and the addition of iron induced marked inhibition of the decarboxylase activity. Ortholpehanthroline blocked the inhibitory effect of iron. The inhibition of uroporphyrinogen decarboxylase by ferrous ion, coupled with its previously reported inhibitory effect on uroporphyrinogen III cosynthetase, provides a possible biochemical explanation for the pattern of urinary porphyrin excretion observed in patients with porphyria cutanea tarda and the clinical association with disordered iron metabolism.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 661
page 661
icon of scanned page 662
page 662
icon of scanned page 663
page 663
icon of scanned page 664
page 664
icon of scanned page 665
page 665
icon of scanned page 666
page 666
icon of scanned page 667
page 667
Version history
  • Version 1 (September 1, 1975): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts