Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108130

Characterization of remnants produced during the metabolism of triglyceride-rich lipoproteins of blood plasma and intestinal lymph in the rat.

O D Mjos, O Faergeman, R L Hamilton, and R J Havel

Find articles by Mjos, O. in: PubMed | Google Scholar

Find articles by Faergeman, O. in: PubMed | Google Scholar

Find articles by Hamilton, R. in: PubMed | Google Scholar

Find articles by Havel, R. in: PubMed | Google Scholar

Published September 1, 1975 - More info

Published in Volume 56, Issue 3 on September 1, 1975
J Clin Invest. 1975;56(3):603–615. https://doi.org/10.1172/JCI108130.
© 1975 The American Society for Clinical Investigation
Published September 1, 1975 - Version history
View PDF
Abstract

The metabolism of intravenously injected large and small chylomicrons from intestinal lymph and of very low density lipoproteins from blood plasma was studied in functionally eviscerated "supradiaphragmetic" rats. For studies with lymph lipoproteins, recipient animals were injected with 4-amino-pyrazolopyrimidine 18 h before injection of lipoprotein to prevent secretion of very low density lipoproteins into their blood plasma. In all cases, most of the triglycerides (labeled with 14C) were rapidly metabolized, whereas cholesteryl esters (labeled with 3H) persisted in the blood. Most of the cholesteryl esters remained in smaller "remnant" lipoproteins, less dense that 1.006, which retained an apparently spherical shape, as determined by electron microscopy of negatively stained preparations. Whereas the diameters and chemical compositions of large chylomicrons were substantially different from those of small chylomicrons and very low density lipoproteins, all remnants were similar in these respects. Average remnant diameters were 400-600 A and remnants were enriched in cholesteryl esters and in protein insoluble in tetramethylurea. In addition to triglycerides, remnants were depleted of phospholiarticle size, the composition of remnants, like that of their precursors, was consistent with the "pseudomicellar" model of lipoproteins, in which a core of nonpolar lipids is covered by a monolayer of polar lipids and protein. These results domonstrate the fundamental similarity of the initial step in the metabolism of triglyceride-rich lipoproteins from intestinal mucosa and liver and show that loss of triglycerides from the core of the particles is accompanied by removal of polar components from the surface.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 603
page 603
icon of scanned page 604
page 604
icon of scanned page 605
page 605
icon of scanned page 606
page 606
icon of scanned page 607
page 607
icon of scanned page 608
page 608
icon of scanned page 609
page 609
icon of scanned page 610
page 610
icon of scanned page 611
page 611
icon of scanned page 612
page 612
icon of scanned page 613
page 613
icon of scanned page 614
page 614
icon of scanned page 615
page 615
Version history
  • Version 1 (September 1, 1975): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts