Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Deoxyribonucleic acid strandedness. Partial characterization of the antigenic regions binding antibodies in lupus erythematosus serum.
R J Samaha, W S Irvin
R J Samaha, W S Irvin
Published August 1, 1975
Citation Information: J Clin Invest. 1975;56(2):446-457. https://doi.org/10.1172/JCI108111.
View: Text | PDF
Research Article

Deoxyribonucleic acid strandedness. Partial characterization of the antigenic regions binding antibodies in lupus erythematosus serum.

  • Text
  • PDF
Abstract

This study shows that tritiated thymidine labeled DNA prepared from mammalian cells by the Marmur technique is a pure preparation of nucleic acid that is composed essentially of two populations of molecules. One molecular population consists of primarily double-standed nucleic acid, while the other population is of double-stranded nucleic acid with significant single-stranded regions. The double-stranded DNA with single-stranded regions can, depending upon the length of the single strand, behave as "native" DNA or "denatured" DNA on methylated albumin kieselguhr (MAK) column chromatography, Using MAK chromatography we have separated the DNA into a saltelutable fraction composed of primarily double-stranded molecules and an alkaline-elutable fraction containing double-stranded nucleic acid with variable length, single-stranded regions. Endonuclease enzyme removal of the single-stranded regions from the alkaline fraction DNA yield nucleic acid that behaves identically to the salt elutable DNA. Exonuclease removal of the single-stranded regions suggests they are located primarily at the ends of the molecules. Our data show that the alkaline-elutable DNA differs from salt-elutable DNA only in that the former has significant single-stranded regions. Sera of patients with systemic lupus erythematosus (SLE) selected for anti-DNA by hemagglutination bind significantly less to the alkaline fraction DNA than the sale fraction DNA. This difference in binding clearly does not represent simply an affinity for double-stranded vs. single-stranded nucleic acid since the alkaline fraction DNA contains predominately double-stranded nucleic acid. A model for antibody-DNA binding is suggested from the present data and information contained in the literature.

Authors

R J Samaha, W S Irvin

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 105 0
PDF 44 11
Scanned page 402 9
Citation downloads 47 0
Totals 598 20
Total Views 618
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts