Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Radioimmunoassay of human fibrinopeptide B and kinetics of fibrinopeptide cleavage by different enzymes.
S B Bilezikian, H L Nossel, V P Butler Jr, R E Canfield
S B Bilezikian, H L Nossel, V P Butler Jr, R E Canfield
View: Text | PDF
Research Article

Radioimmunoassay of human fibrinopeptide B and kinetics of fibrinopeptide cleavage by different enzymes.

  • Text
  • PDF
Abstract

Thrombin converts fibrinogen to fibrin monomer by cleaving fibrinopeptides A and B (FPA and FPB) from the amino terminal ends of the A (alpha) and B (beta) chains. A radioimmunoassay capable of measuring the A peptide in human blood as an index of thrombin action in vivo has been described previously. This paper describes the development of a radioimmunoassay for FPB and the use of both assays in the demonstration of distinctive patterns of cleavage of the amino terminal ends of the A (alha) and B (beta) chains of fibrinogen by various enzymes. Antisera were raised in rabbits to a synthetic analogue of FPB coupled to bovine serum albumin. FPB analogue was couple to desaminotyrosine and radiolabeled with 125I by the chloramine-T technique. The radiolabeled peptide was bound by the antiserum, and binding was inhibited by synthetic or native FPB. Unbound tracer was separated from bound tracer by charcoal adsorption. The senistivity of the assay was such that 50% inhibition of binding of the tracer was caused by 1.25 ng of the native FPB. Fibrinogen was treated with thrombin, plasmin, trypsin, Reptilase, and an extract of the venom from Ancistrodon contortrix contortrix (ACC). After ethanol precipitation and centrifugation, dialysates of enzymatically altered fibrinogen were assayed for FPA and FPB. The action of thrombin on fibrinogen resulted in a rapid release of FPA and a slower release of FPB. Plasmin cleaved a segment(s) of the B (beta) chain which included FPB but cleaved no detectable FPA-containing material for the first 2 h of incubation. In the case of plasmin-treated fibrinogen, the dialysates had been further treated with thrombin before being assayed for FPA and FPB. Trypsin rapidly cleaved both peptides, the B before the A. Reptilase cleaved only FPA in 24 h. ACC cleaved FPB at a rapid rate, with a slowere cleavage of FPA. The distinctive cleavage patterns produced by the serine proteases may be useful in interpreting the levels of FPA and FPB measured in human blood and in studying the generation of FPA and FPB in clinical blood samples.

Authors

S B Bilezikian, H L Nossel, V P Butler Jr, R E Canfield

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 163 4
PDF 55 4
Scanned page 203 9
Citation downloads 68 0
Totals 489 17
Total Views 506
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts