Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Inorganic pyrophosphate pool size and turnover rate in arthritic joints.
M Camerlain, … , D C Silcox, A Jung
M Camerlain, … , D C Silcox, A Jung
Published June 1, 1975
Citation Information: J Clin Invest. 1975;55(6):1373-1381. https://doi.org/10.1172/JCI108056.
View: Text | PDF
Research Article

Inorganic pyrophosphate pool size and turnover rate in arthritic joints.

  • Text
  • PDF
Abstract

Recent studies have shown elevated inorganic pyrophosphate (PPi) levels in most knee joint fluid supernates from patients with pseudogout (PG) or osteoarthritis (OA) and more modestly elevated levels in some supernates from patients with gout or rheumatoid arthritis (RA) relative to PPi levels found in the venous blood plasma of normal or arthritic subjects. We measured the intraarticular PPi pool and its rate of turnover to better understand the significance of the joint fluid-plasma PPi gradient. Preliminary studies in rabbits showed that (32-P)PPi passed from joint space to blood and vice versa without detectable hydrolysis. Incubation of natural or synthetic calcium pyrophosphate dihydrate (CPPD) microcrystals with synovial fluid in vitro in the presence of (32P)PPi tracer showed no change in PPi specific activity in the supernate over a 19-h period so that exchange of PPi in solution with that in CPPD microcrystals could be ignored. Clearance rates of (32P)PPi and of (33P)Pi, as determined by serially sampling the catheterized knee joints of volunteers with various types of arthritis over a 3-h period, were nearly identical. The (32P)PPi/(32P)Pi was determined in each sample. A mixture of a large excess of cold PPi did not influence the clearance rate of either nuclide. The quantity of PPi turned over per hous was calculated from the pool size as determined by isotope dilution and the turnover rate. The residual joint fluid nuclide was shown to be (32P)PPi. The PPi pool was generally smaller and the rate of turnover was greater in clinically inflamed joints. The mean plus or minus SEM pool size (mu-moles) and turnover rate (percent/hour) in PG knees was 0.23 plus or minus 0.07 and 117 plus or minus 11.9, hydrolysis rate (%/h) to Pi was 27.7 plus or minus 13.2; in OA knees: 0.45 plus or minus 0.26 and 72 plus or minus 9.2, hydrolysis 6.9 plus or minus 0.9; in gouty knees: 0.8 plus or minus 0.41 and 50 plus or minus 11.6, hydrolysis 9.8 plus or minus 2.8; and in RA knees: 0.14 plus or minus 0.14 and 114 plus or minus 35.8, hydrolysis 236 plus or minus 116. PPi turnover (mumoles/hour) correlated with the degree of OA change present in the joint as graded by radiologic criteria irrespective of the clinical diagnosis. Mean PPi turnover in joints with advanced OA was greater than in those with mild or moderate changes (P smaller than 0.001), but the mild and moderate groups showed no significant difference. We conclude that synovial PPi turnover and elevated PPi fluid concentrations are not specific for PG patients, and that these factors alone cannot be the only determinants of CPPD crystal deposition.

Authors

M Camerlain, D J McCarty, D C Silcox, A Jung

×

Usage data is cumulative from February 2022 through February 2023.

Usage JCI PMC
Text version 162 0
PDF 33 6
Scanned page 217 5
Citation downloads 19 0
Totals 431 11
Total Views 442
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts