Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107974

Conversion of human erythrocyte-adenosine deaminase activity to different tissue-specific isozymes. Evidence for a common catalytic unit.

R Hirschhorn

Find articles by Hirschhorn, R. in: PubMed | Google Scholar

Published March 1, 1975 - More info

Published in Volume 55, Issue 3 on March 1, 1975
J Clin Invest. 1975;55(3):661–667. https://doi.org/10.1172/JCI107974.
© 1975 The American Society for Clinical Investigation
Published March 1, 1975 - Version history
View PDF
Abstract

Adenosine deaminase activity resides in various characteristic isozymes in red blood cells (RBC-ADA) and other tissues. Absence of RBC-ADA has been reported in a proportion of patients with autosomally inherited severe combined immunodeficiency (SCID). We have previously reported that the tissue isozymes of ADA are also deficient in children with SCID and RBC-ADA deficiency, although these isozymes differ from RBC-ADA in molecular weight, accessible SH groups, and electrophoretic mobility. The deficiency of all types of ADA in SCID implies that a catalytic unit of ADA in each isozyme is coded by the same structural gene. The relationship of RBC-ADA and the different tissue ADA isozymes is the subject of this paper. Incubation of RBC-ADA with ADA-deficient liver, kidney, and fibroblast extracts resulted in the appearance of new isozymes of ADA. These newly generated isozymes had the physicochemical and electrophoretic characteristics of the tissue-specific isozymes obtained from normal tissues. The electrophoretic mobility of the isozyme generated appeared to depend upon the tissue utilized and corresponded to the electrophoretic mobilities of the ADA isozymes found naturally in each of the different tissues. Additionally, the genetically determined polymorphism exhibited by RBC-ADA could be detected in the isozyme generated. Incubation with normal kidney also caused conversion of the RBC isozyme to the kidney form. These findings further support the concept that the catalytic activity of each of the several forms of the ADA enzyme resides in a single molecule coded at the same genetic locus as is defective in one form of SCID. The tissue-specific isozymes, which differ in electrophoretic mobility and molecular weight, are generated by interaction of the RBC catalytic unit with tissue-specific factors present in the different tissues of normal humans and patients.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 661
page 661
icon of scanned page 662
page 662
icon of scanned page 663
page 663
icon of scanned page 664
page 664
icon of scanned page 665
page 665
icon of scanned page 666
page 666
icon of scanned page 667
page 667
Version history
  • Version 1 (March 1, 1975): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts