Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107966

Chemotactic activity derived from interaction of factors D and B of the properdin pathway with cobra venom factor or C3B.

S Ruddy, K F Austen, and E J Goetzl

Find articles by Ruddy, S. in: PubMed | Google Scholar

Find articles by Austen, K. in: PubMed | Google Scholar

Find articles by Goetzl, E. in: PubMed | Google Scholar

Published March 1, 1975 - More info

Published in Volume 55, Issue 3 on March 1, 1975
J Clin Invest. 1975;55(3):587–592. https://doi.org/10.1172/JCI107966.
© 1975 The American Society for Clinical Investigation
Published March 1, 1975 - Version history
View PDF
Abstract

Interaction of D (the activated form of D) and B, factors of the properdin pathway, with C3b (the major cleavage fragment of C3) generates a convertase, C3B, which cleaves C3 and initiates the terminal complement sequence C5-C9. A functionally analogous more stable C3 convertase, CoVFB, ir formed by substituting cobra venom factor (CoVF) for C3b. Mixtures of highly purified CoVF, B, and D were chemotactic for human neutrophil polymorphonuclear leukocytes as assessed in Boyden chambers either by microscopic enumeration of migrating cells or by counting of 51Cr-labeled cells. Control mixtures containing CoVF, B, and D, reacted in the absence of Mg++, were hemolytically inactive and devoid of chemotactic activity. Over a range of doses, the chemotactic activity of mixtures yielding CoVFB correlated with their hemolytic activity. Pretreatment of neutrophils with mixtures containing CoVFB rendered them unresponsive to subsequent chemotactic stimulation by kallikrein of C5a, indicating cross-deactivation to other chemotactic factors. Similar neutrophil deactivation occurred after exposure to a mixture of C3b, B, and D in which C3B was formed; with short incubation times and high cell concentration C3B also exhibited some chemotactic activity. The chemotactic activity of C3B and CoVFB is an example of a biologic function arising from interactions among factors of the properdin pathway per se, as distinguished from the capacity of this pathway to activate C3 and the terminal complement sequence.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 587
page 587
icon of scanned page 588
page 588
icon of scanned page 589
page 589
icon of scanned page 590
page 590
icon of scanned page 591
page 591
icon of scanned page 592
page 592
Version history
  • Version 1 (March 1, 1975): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts