Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107961

Collagen in the human lung. Quantitation of rates of synthesis and partial characterization of composition.

K Bradley, S McConnell-Breul, and R G Crystal

Find articles by Bradley, K. in: PubMed | Google Scholar

Find articles by McConnell-Breul, S. in: PubMed | Google Scholar

Find articles by Crystal, R. in: PubMed | Google Scholar

Published March 1, 1975 - More info

Published in Volume 55, Issue 3 on March 1, 1975
J Clin Invest. 1975;55(3):543–550. https://doi.org/10.1172/JCI107961.
© 1975 The American Society for Clinical Investigation
Published March 1, 1975 - Version history
View PDF
Abstract

The presence of collagen in lung is fundamental in normal lung structure and function. Methods have been developed to examine human fetal and adult lung collagen with respect to its composition and synthesis. The second trimester fetal lung has a large number of cells per unit lung mass (36.6 plus or minus 2.7 mug DNA/mg dry wt) and relatively small amounts of collagen (17.0 plus or minus 5.3 mug collagen/mg dry wt). The number of cells per unit lung mass in the adult lung (11.1 plus or minus 3.4 mug DNA/mg dry wt) is 30% of the number of cells in the fetal lung, but the adult has 11 times more collagen (196 plus or minus 25 mug collagen/mg dry wt). The composition of fetal lung collagen can be partially characterized by extraction with salt at neutral pH, acetic acid, or guanidine. The extracted chains, representing 10% of the total lung collagen, chromatograph as alpha1 and alpha2 chains, each with a mol wt of 100,000 and an animo acid composition characteristic for collagen but not specific for lung. Short-term explant cultures of fetal and adult lung synthesize alpha chains which can be isolated by ion-exchange chromatography. These chains, representing 30-40% of the total collagen synthesized by the explants, coelectrophorese with extracted collagen chains on acrylamide gels: they are destroyed by clostridial collagenase and they have a mol wt of 100,000. Although the composition of the collagen synthesized by these explants can be only partially characterized, the rate of synthesis of both collagen and noncollagen protein can be quantitated. In fetal lung, 4.0 plus or minus 1.2% of the amino acids incorporated into protein per hour are incorporated into collagen. In normal adult lung, this percentage (4.2 plus or minus 0.9%) is remarkably similar. These values are almost identical to the relative rate of collagen synthesis in rabbit lung in the same age range. This technology should be applicable to answer specific questions regarding collagen synthesis and degradation in human lung disease.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 543
page 543
icon of scanned page 544
page 544
icon of scanned page 545
page 545
icon of scanned page 546
page 546
icon of scanned page 547
page 547
icon of scanned page 548
page 548
icon of scanned page 549
page 549
icon of scanned page 550
page 550
Version history
  • Version 1 (March 1, 1975): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts