Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107917

In vitro binding of L-triiodothyronine to receptors in rat liver nuclei. Kinectics of binding, extraction properties, and lack of requirement for cytosol proteins.

M I Surks, D H Koerner, and J H Oppenheimer

Find articles by Surks, M. in: PubMed | Google Scholar

Find articles by Koerner, D. in: PubMed | Google Scholar

Find articles by Oppenheimer, J. in: PubMed | Google Scholar

Published January 1, 1975 - More info

Published in Volume 55, Issue 1 on January 1, 1975
J Clin Invest. 1975;55(1):50–60. https://doi.org/10.1172/JCI107917.
© 1975 The American Society for Clinical Investigation
Published January 1, 1975 - Version history
View PDF
Abstract

Isolated hepatic nuclei from euthyroid rats were incubated with tracer (125I)L-triiodothyronine (T3) and increasing doses of nonradioactive T3 for 30 min at 37degrees C. The T3 bound specifically to nuclear sites increased with increasing T3 doses to a plateau, which represented the nuclear binding capacity, M. Addition of 1 mM KCN, NaF, dinitrophenol, oriodoacetate did not affect nuclear binding, indicating that active metabolism was not required. Kinetic studies showed that the nuclear sites were equilibrated with T3 within 30 min of incubation (one-half maximal binding at 3 min) and that the rate of release of T3 in vitro (0.058 min-1) was the same for endogenous T3 or for T3 bound to nuclei in vitro. Nuclear T3 resisted extraction with 0.14 M NaC1 buffered at pH 7.5, but both endogenous hormone and T3 bound in vitro were readily extracted by 0.4 M KC1 at pH 8.0. The elution profiles of endogenous and in vitro-bound T3 from Sephadex G-100 columns showed a common protein peak with a molecular weight of 60-65,000, assuming a globular protein. Scatchard analysis of in vitro displacement studies showed a single class of binding sites. Mean M equals 0.23 times 10-9 M or 0.85 ng T3 for nuclei isolated from 1 g of liver. Mean M closely corresponded to that anticipated from reported in vivo studies. The apparent association constant Ka for the nuclear sites, 5.55 times 108 M-1, was lower than in studies in vivo, probably attributable to the different ionic milieu of nuclei in the incubation buffer and in the intact cell. Thus, the identity of the nuclear T3 binding sites studied in vitro to those reported for endogenous hormone is demonstrated by similar binding capacities, release rates, analogue binding affinities (previously reported), and localization to chromatin nonhistone proteins of comparable molecular weight. The role of cytosol protein in nuclear binding was assessed by comparing binding parameters for extensively washed nuclei and nuclei incubated either with contaminating or added cytosol. No difference in Ka or M was found. Moreover, it was unlikely that specific cytosol proteins were already present in nuclei and functioned during incubation as a shuttle for T3, since Ka and M for nuclei obtained from athyreotic rats were similar to Ka and M for nuclei from euthyroid animals. Thus, an initial interaction between T3 and specific cytosol proteins does not appear to be a prerequisite for translocation of T3 to nuclear sites.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 50
page 50
icon of scanned page 51
page 51
icon of scanned page 52
page 52
icon of scanned page 53
page 53
icon of scanned page 54
page 54
icon of scanned page 55
page 55
icon of scanned page 56
page 56
icon of scanned page 57
page 57
icon of scanned page 58
page 58
icon of scanned page 59
page 59
icon of scanned page 60
page 60
Version history
  • Version 1 (January 1, 1975): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts