Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107890

Dependence of Saline-Induced Natriuresis upon Exposure of the Kidney to the Physical Effects of Extracellular Fluid Volume Expansion

John P. Fitzgibbons, F. John Gennari, Howard B. Garfinkel, and Stanley Cortell

Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts 02111

Renal Service, New England Medical Center Hospital, Boston, Massachusetts 02111

Find articles by Fitzgibbons, J. in: PubMed | Google Scholar

Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts 02111

Renal Service, New England Medical Center Hospital, Boston, Massachusetts 02111

Find articles by Gennari, F. in: PubMed | Google Scholar

Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts 02111

Renal Service, New England Medical Center Hospital, Boston, Massachusetts 02111

Find articles by Garfinkel, H. in: PubMed | Google Scholar

Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts 02111

Renal Service, New England Medical Center Hospital, Boston, Massachusetts 02111

Find articles by Cortell, S. in: PubMed | Google Scholar

Published December 1, 1974 - More info

Published in Volume 54, Issue 6 on December 1, 1974
J Clin Invest. 1974;54(6):1428–1436. https://doi.org/10.1172/JCI107890.
© 1974 The American Society for Clinical Investigation
Published December 1, 1974 - Version history
View PDF
Abstract

In many previous studies, the natriuresis induced by saline loading has been demonstrated to persist even though glomerular filtration rate (GFR) has been decreased to below pre-expansion levels by a reduction in renal artery pressure. In such studies, however, the kidney has been exposed to the effects of volume expansion for varying periods of time before renal artery pressure was controlled. The present experiments were designed to evaluate whether this period of exposure induces critical changes in intrarenal factors that are responsible for the natriuresis.

Experiments were carried out in rats, in which renal artery pressure was decreased to 70 mm Hg either at the onset of saline loading (immediate clamping experiments) or after 45 min of saline loading had elapsed (delayed clamping experiments). In the delayed clamping experiments, consonant with previous studies, mean sodium excretion, 3.2 μeq/min, remained markedly increased above control, despite a reduction in GFR to 91% of the hydropenic control value. In contrast, when renal artery pressure was comparably reduced at the onset of saline loading mean sodium excretion was only trivially increased, 0.4 μeq/min, although GFR increased to 140% of the hydropenic control value.

These results exclude an important role for either a circulating hormone or a reduction in plasma oncotic pressure in the natriuretic response to saline loading, and indicate that intrarenal factors are the critical determinants of the natriuresis. We have used the difference in response to saline loading in the immediate and delayed clamping experiments to evaluate the role of two intrarenal factors, interstitial hydrostatic pressure and renal plasma flow. Interstitial pressure changes were estimated from changes in tubular pressure and diameter by using the in situ compliance characteristics of the tubules. In a group of rats saline loaded without aortic clamping, interstitial pressure increased by 4-5 mm Hg and renal plasma flow increased by 2.5 ml/min. During the period of reduced renal artery pressure, however, neither interstitial pressure nor renal plasma flow was detectably increased above control in either the immediate or the delayed clamping experiments.

The only noteworthy difference between the experiments in which a natriuresis occurred (unclamped and delayed clamping studies) and the experiments in which no natriuresis occurred is that in the former group the kidney was at least transiently exposed both to an increase in renal plasma flow and interstitial pressure. These findings indicate, first, that extracellular fluid volume expansion can induce a natriuresis only if the kidney has been exposed to at least a transient increase in either interstitial hydrostatic pressure or renal plasma flow (or both); and, second, that a sustained increase in interstitial pressure and renal plasma flow is not required for the natriuresis to persist.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1428
page 1428
icon of scanned page 1429
page 1429
icon of scanned page 1430
page 1430
icon of scanned page 1431
page 1431
icon of scanned page 1432
page 1432
icon of scanned page 1433
page 1433
icon of scanned page 1434
page 1434
icon of scanned page 1435
page 1435
icon of scanned page 1436
page 1436
Version history
  • Version 1 (December 1, 1974): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts