The isolated in situ perfused rat pancreas was used to study glucose and catecholamine control of glucagon secretion, and to investigate the possible role of endogenous cyclic AMP as a mediator of this secretory process. When perfusate glucose was acutely dropped from 100 to 25 mg/100 ml, glucagon was released in a biphasic pattern with an early spike and a later plateau-like response. 300 mg/100 ml glucose suppressed glucagon secretion to near the detection limit of the radioimmunoassay (15 pg/ml). When perfusate glucose was dropped from 300 to 25 mg/100 ml, a delayed, relatively small peak occurred suggesting persisting alpha cell suppression by prior high glucose exposure. 2-Deoxy d-glucose stimulated glucagon secretion and inhibited insulin secretion.
Gordon C. Weir, Stephen D. Knowlton, Donald B. Martin
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 208 | 7 |
49 | 18 | |
Scanned page | 373 | 10 |
Citation downloads | 62 | 0 |
Totals | 692 | 35 |
Total Views | 727 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.