Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107886

Somatostatin-Induced Changes in Insulin and Glucagon Secretion in Normal and Diabetic Dogs

Hideo Sakurai, Richard Dobbs, and Roger H. Unger

Veterans Administration Hospital, Dallas, Texas

Department of Internal Medicine, The University of Texas Southwestern Medical School at Dallas 75235

Find articles by Sakurai, H. in: PubMed | Google Scholar

Veterans Administration Hospital, Dallas, Texas

Department of Internal Medicine, The University of Texas Southwestern Medical School at Dallas 75235

Find articles by Dobbs, R. in: PubMed | Google Scholar

Veterans Administration Hospital, Dallas, Texas

Department of Internal Medicine, The University of Texas Southwestern Medical School at Dallas 75235

Find articles by Unger, R. in: PubMed | Google Scholar

Published December 1, 1974 - More info

Published in Volume 54, Issue 6 on December 1, 1974
J Clin Invest. 1974;54(6):1395–1402. https://doi.org/10.1172/JCI107886.
© 1974 The American Society for Clinical Investigation
Published December 1, 1974 - Version history
View PDF
Abstract

In conscious dogs intravenously infused somatostatin (3.3 μg per min for 1 h) caused prompt and sustained declines in mean plasma insulin and glucagon, even during alanine infusion and intraduodenal casein hydrolysate feeding; plasma glucose declined, but not significantly. 6.7 μg per min of somatostatin significantly lowered pancreatoduodenal vein glucagon and insulin within 2.5 min and profoundly suppressed their secretion throughout the infusion. Consistent bihormonal suppression occurred at rates as low as 24 ng per kg per min, but was variable at 12 and 2.4 ng per kg per min. When somatostatin-induced (3.3 μg per min) hypoglucagonemia was corrected by exogenous glucagon, hyperglycemia occurred. In dogs with long-standing insulin-requiring alloxan diabetes 3.3 μg per min of somatostatin suppressed glucagon to 55 pg per ml throughout the 30-min infusion and lowered glucose by 36.4±6.1 mg per dl, about 1 mg per dl per min. Glucagon suppression was maintained despite alanine infusion, and glucose, which rose 29 mg per dl during alanine infusion without somatostatin, declined 58 mg per dl in the somatostatin-treated diabetic dogs despite alanine. Continuous infusion of somatostatin for 24 h in five insulin-requiring alloxan-diabetic dogs suppressed glucagon and lowered glucose significantly, usually to below normal.

It is concluded that in normal dogs pharmacologic doses of somatostatin virtually abolish insulin and glucagon secretion in the basal state and during hyperaminoacidemia. Hyperglycemia occurs during somatostatin-induced insulin lack only if hypoglucagonemia is corrected. Somatostatin suppresses glucagon in diabetic dogs and lowers their plasma glucose approximately 1 mg per dl per min, even when the gluconeogenic substrate alanine is abundant. Glucagon suppression can be maintained for several hours in such dogs and hyperglycemia is thereby reduced.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1395
page 1395
icon of scanned page 1396
page 1396
icon of scanned page 1397
page 1397
icon of scanned page 1398
page 1398
icon of scanned page 1399
page 1399
icon of scanned page 1400
page 1400
icon of scanned page 1401
page 1401
icon of scanned page 1402
page 1402
Version history
  • Version 1 (December 1, 1974): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts