Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107859

Protein Binding by Specific Receptors on Human Placenta, Murine Placenta, and Suckling Murine Intestine in Relation to Protein Transport across These Tissues

Jonathan D. Gitlin and David Gitlin

Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213

Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15213

Find articles by Gitlin, J. in: PubMed | Google Scholar

Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213

Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15213

Find articles by Gitlin, D. in: PubMed | Google Scholar

Published November 1, 1974 - More info

Published in Volume 54, Issue 5 on November 1, 1974
J Clin Invest. 1974;54(5):1155–1166. https://doi.org/10.1172/JCI107859.
© 1974 The American Society for Clinical Investigation
Published November 1, 1974 - Version history
View PDF
Abstract

Human, rat, and mouse placentas and rat and mouse intestines were homogenized in buffered saline, and fraction consisting primarily of cell membranes was separated from each of the homogenates by differential centrifugation. Human, bovine, and guinea pig IgG, and human IgE, Bence-Jones protein, serum albumin, insulin, and growth hormone were labeled with 131I or 125I, and the binding of these proteins by the cell membrane fractions was investigated. Rat and mouse sucklings were given labeled proteins intragastrically, and the amount of each protein absorbed after a given interval of time was determined. It was found that the degree and specificity of protein binding by the cell membrane fractions from human and murine placentas strikingly paralleled the relative rate and specificity of protein transport from mother to fetus in the respective species at or near term. Similarly, the degree and specificity of protein binding by the cell membrane fractions from suckling rat and mouse intestines tended to parallel the rate and specificity of protein absorption from the gastrointestinal tract in these animals. However, some discordance between protein binding and protein transport was also observed. The data suggest that: (a) the binding of a protein by specific receptors on cell membranes may be a necessary first step in the transcellular transport of the protein; (b) specific protein binding by cell receptors does not ensure the transport of that protein across the tissue barrier; and (c) specific transport mechanisms other than or in addition to specific cell membrane receptors are involved in the active transport of proteins across the human or murine placenta or the suckling murine intestine.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1155
page 1155
icon of scanned page 1156
page 1156
icon of scanned page 1157
page 1157
icon of scanned page 1158
page 1158
icon of scanned page 1159
page 1159
icon of scanned page 1160
page 1160
icon of scanned page 1161
page 1161
icon of scanned page 1162
page 1162
icon of scanned page 1163
page 1163
icon of scanned page 1164
page 1164
icon of scanned page 1165
page 1165
icon of scanned page 1166
page 1166
Version history
  • Version 1 (November 1, 1974): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts