Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

A Microperfusion Study of Phsophate Reabsorption by the Rat Proximal Renal Tubule EFFECT OF PARATHYROID HORMONE
Norman Bank, … , Hagop S. Aynedjian, Stephen W. Weinstein
Norman Bank, … , Hagop S. Aynedjian, Stephen W. Weinstein
Published November 1, 1974
Citation Information: J Clin Invest. 1974;54(5):1040-1048. https://doi.org/10.1172/JCI107847.
View: Text | PDF
Research Article

A Microperfusion Study of Phsophate Reabsorption by the Rat Proximal Renal Tubule EFFECT OF PARATHYROID HORMONE

  • Text
  • PDF
Abstract

To study the mechanism of phsophate reabsorption by the proximal tubule and the effect of parathyroid hormone (PTH), microperfusion experiments were carried out in rats. Segments of proximal tubule isolated by oil blocks were perfused in vivo with one of three solutions, each containing 152 meq/liter Na+ and 2 mmol/liter phosphate, but otherwise differing in composition. The pH of solution 1 was 6.05-6.63, indicating that 60-85% of the phosphate was in the form of H2PO4-. The pH of solution 2 was 7.56-7.85, and 85-92% of the phosphate was in the form of HPO4=. Solution 3 contained HCO3- and glucose and had a pH of 7.50-7.65. When the proximal tubules were perfused with solution 1, the 32P concentration in the collected perfusate was found to be consistently lower than in the initial perfusion solution. In sharp contrast, when the tubules were perfused with solutions 2 or 3, 32P concentration usually rose above that in the initial solution. Water (and persumably Na+) reabsorption, as measured with [3H]inulin, was the same with the acid and alkaline solutions. Administration of partially purified PTH clearly prevented the fall in phosphate concentration with the acid solution, but had a less discernible effect on phosphate reabsorption with the two alkaline solutions. Measurements of pH within the perfused segments with antimony microelectrodes demonstrated that PTH enhanced alkalinization of the acid perfusion solution. The findings are consistent with the view that H2PO4- is reabsorbed preferentially over HPO4=. This can be attributed to either an active transport mechanism for H2PO4- or selective membrane permeability to this anion. PTH appears to either inhibit an active transport process for H2PO4-, or to interfere with passive diffusion of phosphate by alkalinizing the tubular lumen.

Authors

Norman Bank, Hagop S. Aynedjian, Stephen W. Weinstein

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 187 3
PDF 136 8
Scanned page 437 2
Citation downloads 150 0
Totals 910 13
Total Views 923
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts