The ability to excrete an oral water load and the renal diluting mechanism were studied in hypothyroid rats and in age-matched euthyroid controls. Hypothyroid animals excreted a significantly smaller fraction of a 50-ml/kg oral water load than controls, demonstrating the same limited ability to excrete free water as thyroid-deficient man. During hypotonic (0.45%) saline infusion, absolute sodium delivery to the diluting segment and free water clearance were markedly lower in hypothyroid rats. However, both fractional distal sodium delivery and fractional free water clearance were similar in hypothyroid and control animals, suggesting that the reduced absolute free water formation in hypothyroid rats was due to decreased net distal delivery. In support of this hypothesis was the observation that fractional distal sodium reabsorption was equal or higher in thyroid-deficient rats, which indicates that the sodium reabsorptive capacity of the diluting segment was preserved in these animals. The results cannot be attributed to incomplete suppression of antidiuretic hormone (ADH) since they were identical in diabetes insipidus rats, nor to different rates of non-ADH-dependent backflux of filtrate since tissue osmolality and solute concentrations in the cortex, medulla, and papilla were similar in hypothyroid and control rats of both Sprague-Dawley and Brattleboro strains.
Dimitrios S. Emmanouel, Marshall D. Lindheimer, Adrian I. Katz
Usage data is cumulative from August 2024 through August 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 159 | 10 |
63 | 14 | |
Figure | 0 | 3 |
Scanned page | 259 | 30 |
Citation downloads | 49 | 0 |
Totals | 530 | 57 |
Total Views | 587 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.