Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107806

Studies of Hemoglobin Denaturation and Heinz Body Formation in the Unstable Hemoglobins

Christine C. Winterbourn and R. W. Carrell

Department of Clinical Biochemistry, Christchurch Hospital, Christchurch, New Zealand

Find articles by Winterbourn, C. in: PubMed | Google Scholar

Department of Clinical Biochemistry, Christchurch Hospital, Christchurch, New Zealand

Find articles by Carrell, R. in: PubMed | Google Scholar

Published September 1, 1974 - More info

Published in Volume 54, Issue 3 on September 1, 1974
J Clin Invest. 1974;54(3):678–689. https://doi.org/10.1172/JCI107806.
© 1974 The American Society for Clinical Investigation
Published September 1, 1974 - Version history
View PDF
Abstract

The sequential changes that occur during the precipitation on mild heating of the unstable hemoglobins, Hb Christchurch, Hb Sydney, Hb Köln, and Hb A, were examined with particular attention to the possibility of an accompanying oxidative process. Hb Christchurch, Hb Sydney, and Hb A precipitated with equal amounts of α- and β-chains and full heme complement. Hb Köln, however, was one-half hemedepleted and showed a slight excess of precipitated β-chains. In all cases the spectrum of the precipitated material was typical of a hemichrome. There was no evidence that sulfhydryl oxidation contributed to the precipitation process. Reduced glutathione was unable to protect the hemoglobin against precipitation, and mixed disulfide formation between the precipitating hemoglobin and glutathione was insignificant, even in the presence of excess glutathione. No blockade of β93 cysteines could be demonstrated in the unstable hemoglobins.

Precipitation of oxyhemoglobin and carboxyhemoglobin in all cases gave nonspecific oxidation of approximately two of the six hemoglobin sulfhydryl groups to give intra- and intermolecular disulfide bonds. Single α- and β-chains, plus polymers of up to five or six chains linked by disulfide bridges, were demonstrated by polyacrylamide gel electrophoresis. This disulfide oxidation was not observed with deoxy- or methemoglobin and did not appear to influence the rate of precipitation. These findings fit the theoretical prediction that autoxidation of oxy- and carboxyhemoglobin is accompanied by formation of a free radical, with the reactions of this free radical being confined intramolecularly.

Together, these results are in keeping with predictions based on the known structural abnormalities of the unstable hemoglobins, all of which result in greater molecular flexibility. Our findings support the conclusion that the usual precipitating event is altered bonding at the heme to give the formation of hemichromes. There is no evidence of an accompanying oxidative process that could pose a threat to the integrity of the red cell.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 678
page 678
icon of scanned page 679
page 679
icon of scanned page 680
page 680
icon of scanned page 681
page 681
icon of scanned page 682
page 682
icon of scanned page 683
page 683
icon of scanned page 684
page 684
icon of scanned page 685
page 685
icon of scanned page 686
page 686
icon of scanned page 687
page 687
icon of scanned page 688
page 688
icon of scanned page 689
page 689
Version history
  • Version 1 (September 1, 1974): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts