Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107707

The Effects of the Natriuretic Factor from Uremic Urine on Sodium Transport, Water and Electrolyte Content, and Pyruvate Oxidation by the Isolated Toad Bladder

Michael A. Kaplan, Jacques J. Bourgoignie, Jeffrey Rosecan, and Neal S. Bricker

1Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461

Find articles by Kaplan, M. in: PubMed | Google Scholar

1Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461

Find articles by Bourgoignie, J. in: PubMed | Google Scholar

1Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461

Find articles by Rosecan, J. in: PubMed | Google Scholar

1Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461

Find articles by Bricker, N. in: PubMed | Google Scholar

Published June 1, 1974 - More info

Published in Volume 53, Issue 6 on June 1, 1974
J Clin Invest. 1974;53(6):1568–1577. https://doi.org/10.1172/JCI107707.
© 1974 The American Society for Clinical Investigation
Published June 1, 1974 - Version history
View PDF
Abstract

The urine of patients with chronic uremia contains a gel filtration fraction that is natriuretic in the rat. The effects of this fraction on the isolated urinary bladder of the toad were examined in the present studies. When added to the serosal surface of the bladder, a significant and substantial fall in short-circuit current and potential difference was observed. The changes began after a lag period of at least 10 min and continued over a period of 60 min. The decrease in short-circuit current at the end of 1 h averaged 44%. The same fraction from the urine of normal subjects produced no significant change in either short-circuit current or potential difference. When the isolated epithelial cells from the toad bladder were incubated in the presence of the inhibitor, intracellular sodium content increased significantly. There was no change in intracellular water content; hence the intracellular concentration of sodium increased by a mean of 7 meq/liter. The changes in intracellular potassium content and concentration were not satistically significant. When the isolated epithelia were incubated with the uremic factor, there was also a significant decrease in pyruvate utilization in relation to cells from paired hemibladders incubated in the absence of the fraction. The fraction from normal subjects produced no change in either intracellular sodium content or pyruvate oxidation.

The results suggest that the inhibitor acts from the serosal surface, inhibits sodium transport across the serosal barrier, and produces a decrease in substrate utilization in association with the change in transepithelial sodium transport.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1568
page 1568
icon of scanned page 1569
page 1569
icon of scanned page 1570
page 1570
icon of scanned page 1571
page 1571
icon of scanned page 1572
page 1572
icon of scanned page 1573
page 1573
icon of scanned page 1574
page 1574
icon of scanned page 1575
page 1575
icon of scanned page 1576
page 1576
icon of scanned page 1577
page 1577
Version history
  • Version 1 (June 1, 1974): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts