Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

The Reduction of Glyceraldehyde by Human Erythrocytes L-HEXONATE DEHYDROGENASE ACTIVITY
E. Beutler, E. Guinto
E. Beutler, E. Guinto
Published May 1, 1974
Citation Information: J Clin Invest. 1974;53(5):1258-1264. https://doi.org/10.1172/JCI107672.
View: Text | PDF
Research Article

The Reduction of Glyceraldehyde by Human Erythrocytes L-HEXONATE DEHYDROGENASE ACTIVITY

  • Text
  • PDF
Abstract

Incubation of red cell suspensions with D-glyceraldehyde resulted in disappearance of glyceraldehyde and appearance of glycerol. Concomitantly, there was an increase of CO2 formation from glucose. This indicated that the reduction of glyceraldehyde to glycerol occurred through a NADPH-linked system. Studies in hemolysates revealed the presence of an enzyme with the capacity to catalyze the reduction of glyceraldehyde to glycerol by NADPH. This enzyme was partially purified by DEAE chromatography. The elution pattern of the enzyme and its kinetic characteristics indicated that the enzyme was L-hexonate dehydrogenase (L-gulonate: NADP oxidoreductase, EC 1.1.1.19), not aldose reductase (Alditol: NADP oxidoreductase, EC 1.1.1.21), which had previously been thought present in erythrocytes. The reduction of glyceraldehyde to glycerol is one of a number of pathways for the metabolism of glyceraldehyde that have been found in red cells and/or other mammalian tissues.

Authors

E. Beutler, E. Guinto

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 111 14
PDF 50 14
Scanned page 261 2
Citation downloads 54 0
Totals 476 30
Total Views 506
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts