Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Effects of Dietary Calcium Restriction and Chronic Thyroparathyroidectomy on the Metabolism of [3H]25-Hydroxyvitamin D3 and the Active Transport of Calcium by Rat Intestine
Murray J. Favus, Marlin W. Walling, Daniel V. Kimberg
Murray J. Favus, Marlin W. Walling, Daniel V. Kimberg
View: Text | PDF
Research Article

Effects of Dietary Calcium Restriction and Chronic Thyroparathyroidectomy on the Metabolism of [3H]25-Hydroxyvitamin D3 and the Active Transport of Calcium by Rat Intestine

  • Text
  • PDF
Abstract

Previous studies have shown that chronically thyroparathyroidectomized (TPTX) rats, fed a diet with restricted calcium but adequate phosphorus and vitamin D content, have higher levels of intestinal calcium absorption than controls. The results of recent acute experiments have suggested that parathyroid hormone (PTH) may be essential for regulating the renal conversion of 25-hydroxyvitamin D3 (25-OH-D3) to 1,25-dihydroxyvitamin D3 [1,25-(OH)2-D3] in response to dietary calcium deprivation. Since 1,25-(OH)2-D3 is the form of the vitamin thought to be active in the intestine, increases in calcium transport mediated by this metabolite would not be expected to occur in the absence of the parathyroid glands if the preceding model is correct. The present study was undertaken to examine the chronic effects of both dietary calcium restriction and the absence of PTH on the metabolism of [3H]25-OH-D3 and duodenal calcium-active transport in rats given thyroid replacement. These relatively long term studies confirm earlier observations which indicated that the adaptation of calcium absorption to a low calcium intake occurs in both sham-operated and TPTX animals.

Authors

Murray J. Favus, Marlin W. Walling, Daniel V. Kimberg

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 198 6
PDF 71 2
Scanned page 379 8
Citation downloads 81 0
Totals 729 16
Total Views 745
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts