Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107596

Increased formation of ursodeoxycholic acid in patients treated with chenodeoxycholic acid.

G Salen, G S Tint, B Eliav, N Deering, and E H Mosbach

Division of Gastroenterology, Manhattan Veterans Administration Hospital, New York, USA.

Find articles by Salen, G. in: PubMed | Google Scholar

Division of Gastroenterology, Manhattan Veterans Administration Hospital, New York, USA.

Find articles by Tint, G. in: PubMed | Google Scholar

Division of Gastroenterology, Manhattan Veterans Administration Hospital, New York, USA.

Find articles by Eliav, B. in: PubMed | Google Scholar

Division of Gastroenterology, Manhattan Veterans Administration Hospital, New York, USA.

Find articles by Deering, N. in: PubMed | Google Scholar

Division of Gastroenterology, Manhattan Veterans Administration Hospital, New York, USA.

Find articles by Mosbach, E. in: PubMed | Google Scholar

Published February 1, 1974 - More info

Published in Volume 53, Issue 2 on February 1, 1974
J Clin Invest. 1974;53(2):612–621. https://doi.org/10.1172/JCI107596.
© 1974 The American Society for Clinical Investigation
Published February 1, 1974 - Version history
View PDF
Abstract

The formation of ursodeoxycholic acid, the 7 beta-hydroxy epimer of chenodeoxycholic acid, was investigated in three subjects with cerebrotendinous xanthomatosis and in four subjects with gallstones. Total biliary bile acid composition was analyzed by gas-liquid chromatography before and after 4 months of treatment with 0.75 g/day of chenodeoxycholic acid. Individual bile acids were identified by mass spectrometry. Before treatment, bile from cerebrotendinous xanthomatosis (CTX) subjects contained cholic acid, 85%; chenodeoxycholic acid, 7%; deoxycholic acid, 3%; allocholic acid, 3%; and unidentified steroids, 2%; while bile from gallstone subjects contained cholic acid, 45%; chenodeoxycholic acid, 43%; deoxycholic acid, 11%, and lithocholic acid, 1%. In all subjects, 4 months of chenodeoxycholic acid therapy increased the proportion of this bile acid to approximately 80% and decreased cholic acid to 3% of the total biliary bile acids, the remaining 17% of bile acids were identified as ursodeoxycholic acid. After the intravenous injection of [3H]chenodeoxycholic acid, the specific activity of biliary ursodeoxycholic acid exceeded the specific activity of chenodeoxycholic acid, and the resulting specific activity decay curves suggested precursor-product relationships. When [3H]7-ketolithocholic acid was administrated to another patient treated with chenodeoxycholic acid, radioactivity was detected in both the ursodeoxycholic acid and chenodeoxycholic acid fractions. These results indicate that substantial amounts of ursodeoxycholic acid are formed in patients treated with chenodeoxycholic acid. The ursodeoxycholic acid was synthesized from chenodeoxycholic acid presumably via 7-ketolithocholic acid.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 612
page 612
icon of scanned page 613
page 613
icon of scanned page 614
page 614
icon of scanned page 615
page 615
icon of scanned page 616
page 616
icon of scanned page 617
page 617
icon of scanned page 618
page 618
icon of scanned page 619
page 619
icon of scanned page 620
page 620
icon of scanned page 621
page 621
Version history
  • Version 1 (February 1, 1974): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts