Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107555

Effect of Histamine and Its Methyl Derivatives on Cyclic AMP Metabolism in Gastric Mucosa and Its Blockade by an H2 Receptor Antagonist

Thomas P. Dousa and Charles F. Code

Department of Medicine, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55901

Department of Physiology, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55901

Department of Biophysics, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55901

Find articles by Dousa, T. in: PubMed | Google Scholar

Department of Medicine, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55901

Department of Physiology, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55901

Department of Biophysics, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55901

Find articles by Code, C. in: PubMed | Google Scholar

Published January 1, 1974 - More info

Published in Volume 53, Issue 1 on January 1, 1974
J Clin Invest. 1974;53(1):334–337. https://doi.org/10.1172/JCI107555.
© 1974 The American Society for Clinical Investigation
Published January 1, 1974 - Version history
View PDF
Abstract

In a cell-free system prepared from guinea pig gastric mucosa, histamine and Nα-methyl-histamine produced dose-dependent stimulation of cyclic AMP formation and 1,4-methylhistamine had a minimal stimulatory effect. N-methyl-N′-(2-[5-methylimidazole-4-yl-methylthio]-ethyl) -thiourea (metiamide), a new H2 receptor inhibitor, selectively blocked the stimulation of adenylate cyclase by histamine and its active methyl derivative but had no substantial effect on the basal adenylate cyclase activity or adenylate cyclase stimulated by sodium fluoride. Metiamide inhibited the histamine stimulation of adenylate cyclase at 1/100 the concentration of the histamine. Histamine, its methyl derivatives, and metiamide did not influence the activity of cyclic AMP phosphodiesterase from gastric mucosa. Therefore, histamine stimulates gastric mucosal adenylate cyclase via interaction with the H2 receptor without influencing cyclic AMP breakdown, and N-methylation of histamine on the side chain preserves or even increases its stimulating ability. On the other hand, N-methylation in the ring nearly abolishes the ability of histamine to interact with the H2 receptor.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 334
page 334
icon of scanned page 335
page 335
icon of scanned page 336
page 336
icon of scanned page 337
page 337
Version history
  • Version 1 (January 1, 1974): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts