Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107535

Sources of Cyclic Nucleotides in Plasma

Robert E. Wehmann, Lawrence Blonde, and Alton L. Steiner

Division of Endocrinology and Metabolism, Department of Medicine, Albany Medical College, Albany, New York 12208

Department of Biochemistry, Albany Medical College, Albany, New York 12208

Find articles by Wehmann, R. in: PubMed | Google Scholar

Division of Endocrinology and Metabolism, Department of Medicine, Albany Medical College, Albany, New York 12208

Department of Biochemistry, Albany Medical College, Albany, New York 12208

Find articles by Blonde, L. in: PubMed | Google Scholar

Division of Endocrinology and Metabolism, Department of Medicine, Albany Medical College, Albany, New York 12208

Department of Biochemistry, Albany Medical College, Albany, New York 12208

Find articles by Steiner, A. in: PubMed | Google Scholar

Published January 1, 1974 - More info

Published in Volume 53, Issue 1 on January 1, 1974
J Clin Invest. 1974;53(1):173–179. https://doi.org/10.1172/JCI107535.
© 1974 The American Society for Clinical Investigation
Published January 1, 1974 - Version history
View PDF
Abstract

In order to determine the sites of net production and removal of the cyclic nucleotides in plasma, various blood vessels were catheterized in 17 anesthetized dogs and arterial and venous concentrations of adenosine 3′,5′-monophosphate (cAMP) and guanosine 3′,5′-monophosphate (cGMP) were measured by radioimmunoassay.

Aortic cAMP was 30±2 nM (mean±SE) and cGMP was 13±1 nM. There were no significant differences for either cyclic nucleotide between the concentration in the aorta and that in the inferior vena cava, coronary sinus, hepatic vein, and femoral vein. The concentration of cAMP in renal venous plasma was 25% lower than in aortic plasma, and renal venous cGMP was 51% lower than in the aorta. The pulmonary arterial concentrations of cAMP and cGMP were slightly lower than in the aorta. The concentration of cGMP in the superior mesenteric vein plasma was 83% greater than in aortic plasma; the concentration of cAMP in this vessel was only 16% greater than that in the aorta. Superior vena cava concentrations of both cyclic nucleotides were slightly greater than arterial concentrations.

The results suggest that: (a) the kidneys are a major site of removal of both cyclic nucleotides from plasma. (b) The lungs may be a site of net addition of both cyclic nucleotides to plasma. (c) The small intestine is a site of net production of both cyclic nucleotides, particularly cGMP. (d) The liver probably removes cyclic nucleotides from plasma. (e) Since no other organs or regions studied added detectable net amounts of cyclic nucleotides to plasma, and since the turnover of these compounds in plasma is known to be rapid, the production of plasma cyclic nucleotides under basal conditions may well be the result of small net contributions may well be the result of small net contributions from many tissues or bidirectional fluxes between tissues and plasma, or both.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 173
page 173
icon of scanned page 174
page 174
icon of scanned page 175
page 175
icon of scanned page 176
page 176
icon of scanned page 177
page 177
icon of scanned page 178
page 178
icon of scanned page 179
page 179
Version history
  • Version 1 (January 1, 1974): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts