Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Bone homeostasis in growth hormone receptor–null mice is restored by IGF-I but independent of Stat5
Natalie A. Sims, … , Roland Baron, Paul A. Kelly
Natalie A. Sims, … , Roland Baron, Paul A. Kelly
Published November 1, 2000
Citation Information: J Clin Invest. 2000;106(9):1095-1103. https://doi.org/10.1172/JCI10753.
View: Text | PDF
Article

Bone homeostasis in growth hormone receptor–null mice is restored by IGF-I but independent of Stat5

  • Text
  • PDF
Abstract

Growth hormone (GH) regulates both bone growth and remodeling, but it is unclear whether these actions are mediated directly by the GH receptor (GHR) and/or IGF-I signaling. The actions of GH are transduced by the Jak/Stat signaling pathway via Stat5, which is thought to regulate IGF-I expression. To determine the respective roles of GHR and IGF-I in bone growth and remodeling, we examined bones of wild-type, GHR knockout (GHR–/–), Stat5ab–/–, and GHR–/– mice treated with IGF-I. Reduced bone growth in GHR–/– mice, due to a premature reduction in chondrocyte proliferation and cortical bone growth, was detected after 2 weeks of age. Additionally, although trabecular bone volume was unchanged, bone turnover was significantly reduced in GHR–/– mice, indicating GH involvement in the high bone-turnover level during growth. IGF-I treatment almost completely rescued all effects of the GHR–/– on both bone growth and remodeling, supporting a direct effect of IGF-I on both osteoblasts and chondrocytes. Whereas bone length was reduced in Stat5ab–/– mice, there was no reduction in trabecular bone remodeling or growth-plate width as observed in GHR–/– mice, indicating that the effects of GH in bone may not involve Stat5 activation.

Authors

Natalie A. Sims, Philippe Clément-Lacroix, Francesca Da Ponte, Yasmina Bouali, Nadine Binart, Richard Moriggl, Vincent Goffin, Karen Coschigano, Martine Gaillard-Kelly, John Kopchick, Roland Baron, Paul A. Kelly

×
Options: View larger image (or click on image) Download as PowerPoint
Reduced bone growth and turnover in 10-week-old GHR–/– mice

Reduced bone growth and turnover in 10-week-old GHR–/– mice


Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts