The biochemical mechanism accounting for the connective tissue abnormalities in homocystinuria was explored by examining the effects of various amino acids known to accumulate in the plasma of patients with this disease on cross-link formation in collagen. Neutral salt solutions of purified, rat skin collagen, rich in cross-link precursor aldehydes, were polymerized to native type fibrils by incubating at 37°C in the presence of homocysteine, homocystine, or methionine. After the polymerization was completed, each sample was examined for the formation of covalent intermolecular cross-links, assessed indirectly by solubility tests and directly by measuring the cross-link compounds after reduction with tritiated sodium borohydride and hydrolysis.
Andrew H. Kang, Robert L. Trelstad
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 234 | 10 |
72 | 29 | |
Scanned page | 342 | 10 |
Citation downloads | 54 | 0 |
Totals | 702 | 49 |
Total Views | 751 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.