Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Ouabain Binding and Cation Transport in Human Erythrocytes
Jerry D. Gardner, Diane R. Kiino
Jerry D. Gardner, Diane R. Kiino
Published August 1, 1973
Citation Information: J Clin Invest. 1973;52(8):1845-1851. https://doi.org/10.1172/JCI107367.
View: Text | PDF
Research Article

Ouabain Binding and Cation Transport in Human Erythrocytes

  • Text
  • PDF
Abstract

In the present studies we have explored the relation between ouabain binding and the inhibition of potassium influx in intact human erythrocytes. The rate at which bound ouabain molecules dissociate from the erythrocyte membrane is not altered by complete replacement of choline with sodium or by partial replacement with potassium. These findings indicate that the effects of these cations on ouabain binding reflect alterations in the rate of association of ouabain molecules with the erythrocyte membrane. Variations in the cation composition of the incubation solution did not alter the relation between the fraction of the glycosidebinding sites occupied by ouabain or the fraction of ouabain-sensitive potassium influx which was inhibited. That is, irrespective of the affinity of the erythrocyte membrane for ouabain molecules and irrespective of the magnitude of glycoside-sensitive potassium influx, occupation of a given fraction of the glycoside-binding sites by ouabain results in the inhibition of an equal fraction of the ouabain-sensitive potassium transport sites.

Authors

Jerry D. Gardner, Diane R. Kiino

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 102 1
PDF 60 7
Scanned page 234 2
Citation downloads 65 0
Totals 461 10
Total Views 471
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts