Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107259

Changes in Sucrase, Enterokinase, and Peptide Hydrolase after Intestinal Resection THE ASSOCIATION OF CELLULAR HYPERPLASIA AND ADAPTATION

Denis M. McCarthy and Young S. Kim

Gastrointestinal Research Laboratory, Veterans Administration Hospital, San Francisco, California 94121

Department of Medicine, University of California, School of Medicine, San Francisco, California 94122

Find articles by McCarthy, D. in: PubMed | Google Scholar

Gastrointestinal Research Laboratory, Veterans Administration Hospital, San Francisco, California 94121

Department of Medicine, University of California, School of Medicine, San Francisco, California 94122

Find articles by Kim, Y. in: PubMed | Google Scholar

Published April 1, 1973 - More info

Published in Volume 52, Issue 4 on April 1, 1973
J Clin Invest. 1973;52(4):942–951. https://doi.org/10.1172/JCI107259.
© 1973 The American Society for Clinical Investigation
Published April 1, 1973 - Version history
View PDF
Abstract

In a study of changes in digestive enzymes after massive intestinal resection and the mechanisms by which such changes occur, rats were sacrified 4 wk after removal of the proximal two-thirds of the small intestine. Alterations in the mucosal levels of sucrase, enterokinase, and dipeptide hydrolase (L-leucyl-L-alanine substrate) were examined in the light of associated changes in protein. DNA and wet mucosal weight, measured in standardized gut segments from various regions of intestine.

Metabolic studies showed that normal growth patterns were reestablished after the operation but significant elevations in stool weight and fecal nitrogen occurred in the second postoperative week, falling towards normal by the 4th wk. In standard gut segments wet weight of mucosa, protein, and DNA rose, especially in distal segments, DNA increasing disproportionately. Mucosal levels of the proximally distributed and membrane-bound enzymes, sucrase and enterokinase, showed similar patterns of change: when enzyme activity was expressed in terms of the total per segment, proximally there were considerable increases in both enzymes, but, expressed in terms of specific activity, that of sucrase fell and that of enterokinase was unaltered. By contrast, the largely soluble and more distally distributed dipeptide hydrolase increased more in distal segments and the increases in total activity were accompanied by lesser increases in specific activity. However, in spite of increases in total activity, enzyme activity per milligram DNA fell by over 50% in postanastomotic segments. Subcellular distribution studies showed no change in the percentage of the total activity which was membrane-bound and zymograms confirmed that no new dipeptide hydrolase had appeared after resection.

It is concluded that increases in the segmental totals of various enzymes seen after resection are achieved by disproportinate increases in the number of mucosal cells per segment and that the greatest change in a particular enzyme occurs in the region where the enzyme is normally found in highest concentration.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 942
page 942
icon of scanned page 943
page 943
icon of scanned page 944
page 944
icon of scanned page 945
page 945
icon of scanned page 946
page 946
icon of scanned page 947
page 947
icon of scanned page 948
page 948
icon of scanned page 949
page 949
icon of scanned page 950
page 950
icon of scanned page 951
page 951
Version history
  • Version 1 (April 1, 1973): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts