Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Mechanism of the Lower Esophageal Sphincter Relaxation ACTION OF PROSTAGLANDIN E1 AND THEOPHYLLINE
Raj K. Goyal, Satish Rattan
Raj K. Goyal, Satish Rattan
Published February 1, 1973
Citation Information: J Clin Invest. 1973;52(2):337-341. https://doi.org/10.1172/JCI107189.
View: Text | PDF
Research Article

Mechanism of the Lower Esophageal Sphincter Relaxation ACTION OF PROSTAGLANDIN E1 AND THEOPHYLLINE

  • Text
  • PDF
Abstract

The intravenous injection of prostaglandin E1 (PGE1) causes a dose-dependent relaxation of the lower esophageal sphincter (LES) in the intact, lightly anesthetized opossum. The action of PGE1 is not inhibited by the drugs that produce muscarinic or nicotinic cholinergic antagonism or alpha and beta adrenergic antagonism in the doses that inhibited the action of respective agonists. Moreover, this action is not affected by exogenous gastrin pentapeptide. The action of PGE1 on the LES is mimicked by isoproterenol, theophylline ethylenediamine, and dibutyryl cyclic AMP. Both theophylline, a phosphodiesterase inhibitor, and isoproterenol, an adenyl cyclase stimulator, added to the action of PGE1. On the other hand, adenyl cyclase inhibitor nicotinic acid, as well as phosphodiesterase stimulator, imidazole inhibited its action. Further, both nicotinic acid and imidazole inhibited the degree of LES relaxation produced by esophageal distension. These studies suggest that intracellular cyclic AMP may act as the “second messenger” in the regulation of the lower esophageal sphincter relaxation.

Authors

Raj K. Goyal, Satish Rattan

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 161 10
PDF 67 10
Scanned page 180 5
Citation downloads 53 0
Totals 461 25
Total Views 486
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts