Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107172

Mechanism of the Redistribution of Renal Cortical Blood Flow during Hemorrhagic Hypotension in the Dog

Jay H. Stein, Sampanta Boonjarern, Richard C. Mauk, and Thomas F. Ferris

1Department of Medicine, Ohio State University School of Medicine, Columbus, Ohio 43210

Find articles by Stein, J. in: JCI | PubMed | Google Scholar

1Department of Medicine, Ohio State University School of Medicine, Columbus, Ohio 43210

Find articles by Boonjarern, S. in: JCI | PubMed | Google Scholar

1Department of Medicine, Ohio State University School of Medicine, Columbus, Ohio 43210

Find articles by Mauk, R. in: JCI | PubMed | Google Scholar

1Department of Medicine, Ohio State University School of Medicine, Columbus, Ohio 43210

Find articles by Ferris, T. in: JCI | PubMed | Google Scholar

Published January 1, 1973 - More info

Published in Volume 52, Issue 1 on January 1, 1973
J Clin Invest. 1973;52(1):39–47. https://doi.org/10.1172/JCI107172.
© 1973 The American Society for Clinical Investigation
Published January 1, 1973 - Version history
View PDF
Abstract

Studies were performed to define the mechanisms involved in the redistribution of renal cortical blood flow to inner cortical nephrons which occurs during hemorrhagic hypotension in the dog. The radioactive microsphere method was utilized to measure regional blood flow in the renal cortex. Renal nerve stimulation decreased renal blood flow 40% but had no effect on the fractional distribution of cortical blood flow. Pretreatment with phenoxybenzamine, phentolamine, propranolol, or atropine did not alter the redistribution of cortical flow during hemorrhage. A reduction in renal perfusion pressure by aortic constriction caused a qualitatively similar alteration in regional blood flow distribution as occurred during hemorrhage. When perfusion pressure was kept constant in one kidney by aortic constriction followed by hemorrhage, no redistribution occurred in the kidney with a constant perfusion pressure while the contralateral kidney with the normal perfusion pressure before hemorrhage had a marked increase in the fractional distribution of cortical flow to inner cortical nephrons. Additionally, retransfusion had no effect on the fractional distribution of flow in the kidney in which perfusion pressure was maintained at the same level as during hemorrhage while in the contralateral kidney in which pressure increased to normal there was a redistribution of flow to outer cortical nephrons. These studies indicate that the redistribution of renal cortical blood flow which occurs during hemorrhage is not related to changes in adrenergic activity but rather to the intrarenal alterations which attend a diminution in perfusion pressure.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 39
page 39
icon of scanned page 40
page 40
icon of scanned page 41
page 41
icon of scanned page 42
page 42
icon of scanned page 43
page 43
icon of scanned page 44
page 44
icon of scanned page 45
page 45
icon of scanned page 46
page 46
icon of scanned page 47
page 47
Version history
  • Version 1 (January 1, 1973): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts