Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Bcl-2–dependent oxidation of pyruvate dehydrogenase-E2, a primary biliary cirrhosis autoantigen, during apoptosis
Joseph A. Odin, … , Nicholas F. LaRusso, Antony Rosen
Joseph A. Odin, … , Nicholas F. LaRusso, Antony Rosen
Published July 15, 2001
Citation Information: J Clin Invest. 2001;108(2):223-232. https://doi.org/10.1172/JCI10716.
View: Text | PDF
Article

Bcl-2–dependent oxidation of pyruvate dehydrogenase-E2, a primary biliary cirrhosis autoantigen, during apoptosis

  • Text
  • PDF
Abstract

The close association between autoantibodies against pyruvate dehydrogenase-E2 (PDC-E2), a ubiquitous mitochondrial protein, and primary biliary cirrhosis (PBC) is unexplained. Many autoantigens are selectively modified during apoptosis, which has focused attention on apoptotic cells as a potential source of “neo-antigens” responsible for activating autoreactive lymphocytes. Since increased apoptosis of bile duct epithelial cells (cholangiocytes) is evident in patients with PBC, we evaluated the effect of apoptosis on PDC-E2. Autoantibody recognition of PDC-E2 by immunofluorescence persisted in apoptotic cholangiocytes and appeared unchanged by immunoblot analysis. PDC-E2 was neither cleaved by caspases nor concentrated into surface blebs in apoptotic cells. In other cell types, autoantibody recognition of PDC-E2, as assessed by immunofluorescence, was abrogated after apoptosis, although expression levels of PDC-E2 appeared unchanged when examined by immunoblot analysis. Both overexpression of Bcl-2 and depletion of glutathione before inducing apoptosis prevented this loss of autoantibody recognition, suggesting that glutathiolation, rather than degradation or loss, of PDC-E2 was responsible for the loss of immunofluorescence signal. We postulate that apoptotic cholangiocytes, unlike other apoptotic cell types, are a potential source of immunogenic PDC-E2 in patients with PBC.

Authors

Joseph A. Odin, Robert C. Huebert, Livia Casciola-Rosen, Nicholas F. LaRusso, Antony Rosen

×

Figure 4

Options: View larger image (or click on image) Download as PowerPoint
Persistence of PDC-E2 staining by PBC patient sera in apoptotic cells is...
Persistence of PDC-E2 staining by PBC patient sera in apoptotic cells is cell-type dependent and independent of the stimulus used to induce apoptosis. Both control cells and cells treated with UV-B or staurosporine (STS) to induce apoptosis were examined by confocal, immunofluorescence microscopy. Cells were stained with DAPI (a–h) to distinguish apoptotic cells (cells labeled with stars) from nonapoptotic cells (unlabeled cells). After UV-B treatment, PBC patient sera staining of PDC-E2 was detected in apoptotic HSGs (j), but not in apoptotic Jurkat T cells (l). When inducing apoptosis with STS, PDC-E2 immunoreactivity again was undetectable in apoptotic HeLa (n), while persisting in apoptotic NRCs (p), and was undetectable in apoptotic HeLa (n). Bars, 20 μm. All cell types were stained independently with two different PDC-E2 monospecific sera at least three times with similar results each time. Representative images are shown.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts