Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107129

Characterization of Bile Acid Absorption across the Unstirred Water Layer and Brush Border of the Rat Jejunum

Frederick A. Wilson and John M. Dietschy

Gastrointestinal-Liver Unit, the Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, Texas 75235

Find articles by Wilson, F. in: PubMed | Google Scholar

Gastrointestinal-Liver Unit, the Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, Texas 75235

Find articles by Dietschy, J. in: PubMed | Google Scholar

Published December 1, 1972 - More info

Published in Volume 51, Issue 12 on December 1, 1972
J Clin Invest. 1972;51(12):3015–3025. https://doi.org/10.1172/JCI107129.
© 1972 The American Society for Clinical Investigation
Published December 1, 1972 - Version history
View PDF
Abstract

We have examined the rate-limiting steps involved in bile acid absorption across the unstirred water layer and lipid cell membrane of the jejunal mucosa. Uptake of the polar bile acid taurocholate is limited solely by the cell membrane since this compound permeates the unstirred water layer more rapidly than the lipid cell membrane and stirring does not enhance uptake. With less polar bile acids which permeate the cell membrane relatively more rapidly, however, the unstirred water layer does exert resistance to mucosal uptake of these compounds. That the unstirred water layer is even more rate limiting to uptake from micellar solutions is indicated by the facts that the rate of bile acid absorption from such solutions is lower than from corresponding monomer solutions, stirring markedly enhances uptake from micellar solutions while increases in viscosity of the incubation media depress uptake and expansion of the micelle size further depresses absorption rates. We also have examined the important question of whether the micelle crosses the brush border intact once it reaches the aqueous-lipid interface. The observations that the calculated permeation rate of the micelle should be extremely low, the rate of mucosal cell uptake plateaus at a constant value when the critical micelle concentration is reached at the aqueous-lipid interface, and the different components of a mixed micelle are taken up at different rates indicate that uptake of the intact micelle does not occur; rather, bile acid absorption must be explained in terms of monomers in equilibrium with the micelle. Finally, after correction of the permeability coefficients of the various bile acids for the unstirred layer resistance the incremental partial molar free energy of solution of the hydroxyl group in the brush border membrane was calculated to equal −6126 cal·mole−1 indicating that passive diffusion of these compounds occurs through a very polar region of the cell membrane.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 3015
page 3015
icon of scanned page 3016
page 3016
icon of scanned page 3017
page 3017
icon of scanned page 3018
page 3018
icon of scanned page 3019
page 3019
icon of scanned page 3020
page 3020
icon of scanned page 3021
page 3021
icon of scanned page 3022
page 3022
icon of scanned page 3023
page 3023
icon of scanned page 3024
page 3024
icon of scanned page 3025
page 3025
Version history
  • Version 1 (December 1, 1972): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts