Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Ethanol, acetaldehyde, and myocardial protein synthesis
Sidney S. Schreiber, … , Murray Oratz, Marcus A. Rothschild
Sidney S. Schreiber, … , Murray Oratz, Marcus A. Rothschild
Published November 1, 1972
Citation Information: J Clin Invest. 1972;51(11):2820-2826. https://doi.org/10.1172/JCI107104.
View: Text | PDF
Research Article

Ethanol, acetaldehyde, and myocardial protein synthesis

  • Text
  • PDF
Abstract

The cause of alcoholic myocardiopathy is unknown. The effects of acute exposure to ethanol or its metabolite acetaldehyde on protein synthesis in working, intact, guinea pig hearts in vitro were studied utilizing lysine-14C perfusion. Ethanol at 250 mg/100 ml, a level sufficient to markedly inhibit hepatic production of albumin, did not alter cardiac function, the equilibration of the intracellular free lysine pool in either ventricle, or the incorporation of lysine-14C into protein. Thus, in controls and ethanol-perfused hearts, the incorporation of lysine in 3 hr was 44.1±1.5 and 42.8±1.2 μmoles lysine/g protein N for the right ventricles and 25.6±1.0 and 24.3±0.8 for the left ventricles, respectively. Only at lethal levels, 1500 mg/100 ml ethanol, was protein synthesis depressed. Acetaldehyde 3.5 mg/100 ml (0.8 mM) effected a markedly positive chronotropic and inotropic effect on the perfused heart and slightly depressed equilibration of the intracellular free lysine pool. However, determinations of protein incorporation of lysine-14C based on intracellular lysine-14C specific activities showed a significant decrease from control right and left ventricle values, to 27.1±2.8 and 14.9±1.9. Propanalol, which abolished the chronotropic effect, did not prevent the inhibition of protein synthesis. The studies suggest that acetaldehyde, which inhibits cardiac protein synthesis in vitro, may play a role in alcoholic myocardiopathy by interfering with normal myocardial protein synthesis.

Authors

Sidney S. Schreiber, Kay Briden, Murray Oratz, Marcus A. Rothschild

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 123 2
PDF 45 8
Scanned page 275 1
Citation downloads 59 0
Totals 502 11
Total Views 513
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts