Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI107082

Studies of the Control of Plasma Aldosterone Concentration in Normal Man: III. RESPONSE TO SODIUM CHLORIDE INFUSION

Gordon H. Williams, Michael L. Tuck, Leslie I. Rose, Robert G. Dluhy, and Richard H. Underwood

Endocrine-Metabolic Unit, Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115

Find articles by Williams, G. in: PubMed | Google Scholar

Endocrine-Metabolic Unit, Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115

Find articles by Tuck, M. in: PubMed | Google Scholar

Endocrine-Metabolic Unit, Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115

Find articles by Rose, L. in: PubMed | Google Scholar

Endocrine-Metabolic Unit, Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115

Find articles by Dluhy, R. in: PubMed | Google Scholar

Endocrine-Metabolic Unit, Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115

Find articles by Underwood, R. in: PubMed | Google Scholar

Published October 1, 1972 - More info

Published in Volume 51, Issue 10 on October 1, 1972
J Clin Invest. 1972;51(10):2645–2652. https://doi.org/10.1172/JCI107082.
© 1972 The American Society for Clinical Investigation
Published October 1, 1972 - Version history
View PDF
Abstract

The peripheral plasma levels of aldosterone, renin activity, potassium, sodium, corticosterone, and cortisol were measured in six normal subjects four times daily—10 a.m., 2 p.m., 5 p.m., 11 p.m.—on 3 consecutive days. A constant daytime activity program was maintained throughout the study. After 5 days on a 10 mEq sodium/100 mEq potassium isocaloric intake, the mean upright 10 a.m. plasma renin activity was 1773±186 ng/100 ml per 3 hr and the mean plasma aldosterone, 81±14 ng/100 ml. These two parameters fell continuously throughout the day parallel to the fall in plasma cortisol and corticosterone. In response to 2 liters of normal saline infused from 10 a.m. to 2 p.m. on 2 consecutive days, plasma aldosterone levels fell significantly to 13±5 ng/100 ml at 2 p.m. after the 1st day's infusion and to 6±1 ng/100 ml at 2 p.m. after the 2nd. Plasma renin activity demonstrated a parallel fall to 368±63 ng/100 ml per 3 hr and 189±27 ng/100 ml per 3 hr at 2 p.m. on the 1st and 2nd days, respectively. There was no significant alteration in plasma levels of cortisol, corticosterone, potassium, or sodium on the 2 days of sodium loading in comparison with the control day. In an additional study, five normal supine subjects received 500 ml saline/hr for 6 hr. As in the 2 day study, plasma aldosterone and renin activity had parallel decrements at 1, 2, 4, and 6 hr after the start of the saline infusion. From these studies, it is concluded that plasma renin activity is the dominant factor controlling plasma aldosterone when sodium-depleted normal subjects are acutely repleted.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2645
page 2645
icon of scanned page 2646
page 2646
icon of scanned page 2647
page 2647
icon of scanned page 2648
page 2648
icon of scanned page 2649
page 2649
icon of scanned page 2650
page 2650
icon of scanned page 2651
page 2651
icon of scanned page 2652
page 2652
Version history
  • Version 1 (October 1, 1972): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts