Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Ultrafiltration of lipoproteins through a synthetic membrane: Implications for the filtration theory of atherogenesis
Clark K. Colton, … , Dana E. Wilson, Robert S. Lees
Clark K. Colton, … , Dana E. Wilson, Robert S. Lees
Published September 1, 1972
Citation Information: J Clin Invest. 1972;51(9):2472-2481. https://doi.org/10.1172/JCI107061.
View: Text | PDF

Ultrafiltration of lipoproteins through a synthetic membrane: Implications for the filtration theory of atherogenesis

  • Text
  • PDF
Abstract

To investigate the interaction of lipoproteins with semipermeable membranes, solutions of low density lipoproteins (LDL), very low density lipoproteins (VLDL), mixtures of the two, and diluted, normal, and hyperlipidemic serum were ultrafiltered through a synthetic membrane (500 A nominal pore diameter) using a stirred laboratory ultrafiltration cell. The pressure dependence of ultrafiltrate flux showed that a concentrated layer of lipoproteins was built up at the membrane surface (concentration polarization) and that VLDL was more subject to polarization than LDL. This phenomenon controlled the observed lipoprotein transport behavior. Whereas true membrane rejection (the fraction of the solute on the membrane surface which does not pass through the membrane) was greater than 0.95 for both LDL and VLDL, observed solute rejection varied from nearly 0 to 1.0, depending upon experimental conditions.

Authors

Clark K. Colton, Sigmund Friedman, Dana E. Wilson, Robert S. Lees

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 100 1
PDF 49 7
Scanned page 351 2
Citation downloads 62 0
Totals 562 10
Total Views 572
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts