Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107045

The metabolism of Tay-Sachs ganglioside: catabolic studies with lysosomal enzymes from normal and Tay-Sachs brain tissue

John F. Tallman, William G. Johnson, and Roscoe O. Brady

Developmental and Metabolic Neurology Branch, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland 20014

Department of Biochemistry, Georgetown University School of Medicine, Washington, D. C. 20007

Find articles by Tallman, J. in: PubMed | Google Scholar

Developmental and Metabolic Neurology Branch, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland 20014

Department of Biochemistry, Georgetown University School of Medicine, Washington, D. C. 20007

Find articles by Johnson, W. in: PubMed | Google Scholar

Developmental and Metabolic Neurology Branch, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland 20014

Department of Biochemistry, Georgetown University School of Medicine, Washington, D. C. 20007

Find articles by Brady, R. in: PubMed | Google Scholar

Published September 1, 1972 - More info

Published in Volume 51, Issue 9 on September 1, 1972
J Clin Invest. 1972;51(9):2339–2345. https://doi.org/10.1172/JCI107045.
© 1972 The American Society for Clinical Investigation
Published September 1, 1972 - Version history
View PDF
Abstract

The catabolism of Tay-Sachs ganglioside, N-acetylgalactosaminyl- (N-acetylneuraminosyl) -galactosylglucosylceramide, has been studied in lysosomal preparations from normal human brain and brain obtained at biopsy from Tay-Sachs patients. Utilizing Tay-Sachs ganglioside labeled with 14C in the N-acetylgalactosaminyl portion or 3H in the N-acetylneuraminosyl portion, the catabolism of Tay-Sachs ganglioside may be initiated by either the removal of the molecule of N-acetylgalactosamine or N-acetylneuraminic acid. The activity of the N-acetylgalactosamine-cleaving enzyme (hexosaminidase) is drastically diminished in such preparations from Tay-Sachs brain whereas the activity of the N-acetylneuraminic acid-cleaving enzyme (neuraminidase) is at a normal level. Total hexosaminidase activity as measured with an artificial fluorogenic substrate is increased in tissues obtained from patients with the B variant form of Tay-Sachs disease and it is virtually absent in the O-variant patients. The addition of purified neuraminidase and various purified hexosaminidases exerted only a minimal synergistic effect on the hydrolysis of Tay-Sachs ganglioside in the lysosomal preparations from the control or patient with the O variant of Tay-Sachs disease.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2339
page 2339
icon of scanned page 2340
page 2340
icon of scanned page 2341
page 2341
icon of scanned page 2342
page 2342
icon of scanned page 2343
page 2343
icon of scanned page 2344
page 2344
icon of scanned page 2345
page 2345
Version history
  • Version 1 (September 1, 1972): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts