Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Pathways of glutamine and organic acid metabolism in renal cortex in chronic metabolic acidosis
David P. Simpson
David P. Simpson
Published August 1, 1972
Citation Information: J Clin Invest. 1972;51(8):1969-1978. https://doi.org/10.1172/JCI107003.
View: Text | PDF
Research Article

Pathways of glutamine and organic acid metabolism in renal cortex in chronic metabolic acidosis

  • Text
  • PDF
Abstract

The metabolism of labeled glutamine and of several labeled organic acid anions was compared in tissue slices of renal cortex from chronically acidotic and alkalotic littermate dogs. 15NH3 formation and 15N-amideglutamine utilization were significantly increased by slices from acidotic animals providing further evidence for the similarity of the metabolic responses seen in the tissue slice system and the physiologic effects produced by chronic metabolic acidosis on renal metabolism in the intact animal. Slices from acidotic dogs formed more 14CO2 and glucose-14C than did slices from alkalotic animals when labeled glutamine, citrate, or malate was used as substrate but 14CO2 production from pyruvate-1-14C was slightly reduced in acidotic tissue. With most of the substrates used glucose-14C formation was small compared with 14CO2 formation. Using the amount of glucose-14C formed, the expected 14CO2 production was calculated based on the hypothesis that the primary site of action of metabolic acidosis is on a cytoplasmic step in gluconeogenesis. The actual difference in 14CO2 production between slices from acidotic and alkalotic animals always greatly exceeded this predicted amount, indicating that stimulation of gluconeogenesis represents a minor metabolic response to chronic metabolic acidosis. Evidence from experiments with citrate labeled in various positions showed that metabolic acidosis has its principal effect on an early step in substrate metabolism which must be intramitochondrial in location.

Authors

David P. Simpson

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 101 2
PDF 52 10
Scanned page 348 1
Citation downloads 45 0
Totals 546 13
Total Views 559
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts