Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106931

Characterization of the kinetics of the passive and active transport mechanisms for bile acid absorption in the small intestine and colon of the rat

Eugene R. Schiff, Neal C. Small, and John M. Dietschy

Department of Internal Medicine, The University of Texas Southwestern Medical School at Dallas, Dallas, Texas 75235

Find articles by Schiff, E. in: PubMed | Google Scholar

Department of Internal Medicine, The University of Texas Southwestern Medical School at Dallas, Dallas, Texas 75235

Find articles by Small, N. in: PubMed | Google Scholar

Department of Internal Medicine, The University of Texas Southwestern Medical School at Dallas, Dallas, Texas 75235

Find articles by Dietschy, J. in: PubMed | Google Scholar

Published June 1, 1972 - More info

Published in Volume 51, Issue 6 on June 1, 1972
J Clin Invest. 1972;51(6):1351–1362. https://doi.org/10.1172/JCI106931.
© 1972 The American Society for Clinical Investigation
Published June 1, 1972 - Version history
View PDF
Abstract

Bile acid uptake occurs via passive diffusion in all regions of the intestine and via active absorption in the ileum. Determination of the passive permeability coefficient for ionized monomers (*P-) demonstrated that permeability decreased by a factor of 3.4, 6.8, and 8.1 for the addition of a hydroxyl, glycine, or taurine group, respectively, to the steroid nucleus. Removal of the negative charge increased permeation by a factor of 4.4; however, permeability coefficients for the protonated monomers showed the same relative decrease with addition of a hydroxyl group. The calculated incremental free energies of solution (δΔFW→1) associated with these additions equaled + 757 (hydroxyl), + 1178 (glycine), and + 1291 (taurine) cal/mole. Passive permeability coefficients for the transverse colon showed the same relative relationships among the various bile acids. After making appropriate corrections for passive permeability across the ileum, apparent values for the maximal transport velocity (*Vmax) and Michaelis constant (*Km) of the active transport system were measured. *Vmax depended upon the number of hydroxyl groups on the steroid nucleus; values for the trihydroxy bile acids were high (1543-1906 pmoles/min per cm) while those for the dihydroxy (114-512 pmoles/min per cm) and monohydroxy (45-57 pmoles/min per cm) acids were lower. In contrast, *Km values were related to whether the bile acid was conjugated; unconjugated bile acids had values ranging from 0.37 to 0.49 mM, while values for the conjugated bile acids were approximately half as high (0.12-0.23 mM).

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1351
page 1351
icon of scanned page 1352
page 1352
icon of scanned page 1353
page 1353
icon of scanned page 1354
page 1354
icon of scanned page 1355
page 1355
icon of scanned page 1356
page 1356
icon of scanned page 1357
page 1357
icon of scanned page 1358
page 1358
icon of scanned page 1359
page 1359
icon of scanned page 1360
page 1360
icon of scanned page 1361
page 1361
icon of scanned page 1362
page 1362
Version history
  • Version 1 (June 1, 1972): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts