Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106922

The effect of antidiuretic hormone on solute flows in mammalian collecting tubules

James A. Schafer and Thomas E. Andreoli

Department of Medicine (Division of Nephrology), University of Alabama Medical Center, Birmingham, Alabama 35233

Department of Physiology, University of Alabama Medical Center, Birmingham, Alabama 35233

Find articles by Schafer, J. in: PubMed | Google Scholar

Department of Medicine (Division of Nephrology), University of Alabama Medical Center, Birmingham, Alabama 35233

Department of Physiology, University of Alabama Medical Center, Birmingham, Alabama 35233

Find articles by Andreoli, T. in: PubMed | Google Scholar

Published May 1, 1972 - More info

Published in Volume 51, Issue 5 on May 1, 1972
J Clin Invest. 1972;51(5):1279–1286. https://doi.org/10.1172/JCI106922.
© 1972 The American Society for Clinical Investigation
Published May 1, 1972 - Version history
View PDF
Abstract

These experiments were intended to evaluate the antidiuretic hormone (ADH)-dependent reflection coefficients of urea, sucrose, and NaCl in cortical and outer medullary collecting tubules isolated from mammalian kidney. In one group of experiments, the ADH-dependent osmotic water flows, when the perfusing solutions contained hypotonic NaCl solutions, were indistinguishable from control observations when either urea or sucrose replaced, in part, NaCl in isotonic bathing solutions (cortical collecting tubules). Similarly, both in cortical and outer medullary collecting tubules exposed to ADH, there was zero net osmotic volume flow when a portion of the NaCl in the bathing and/or perfusing solutions was replaced by either sucrose or urea, so long as the perfusing and bathing solutions were isosmolal. Taken together, these observations suggest that the ADH-dependent reflection coefficients of NaCl, urea, and sucrose, in these tubules, were identical. Since the effective hydrodynamic radii of urea and sucrose are, respectively, 1.8 and 5.2 A, it is likely that σi, for urea, sucrose, and NaCl, was unity. In support of this, the diffusion permeability coefficient (PDi cm sec-1) of urea was indistinguishable from zero. Since the limiting sites for urea penetration were the luminal interfaces of the tubules, these data are consistent with the view that ADH increases diffusional water flow across such interfaces.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1279
page 1279
icon of scanned page 1280
page 1280
icon of scanned page 1281
page 1281
icon of scanned page 1282
page 1282
icon of scanned page 1283
page 1283
icon of scanned page 1284
page 1284
icon of scanned page 1285
page 1285
icon of scanned page 1286
page 1286
Version history
  • Version 1 (May 1, 1972): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts