Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106920

The effects of acidosis and alkalosis on the metabolism of glutamine and glutamate in renal cortex slices

Donald E. Kamm and Gerald L. Strope

Department of Medicine, Rochester General Hospital, Rochester, New York 14620

Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14620

Find articles by Kamm, D. in: PubMed | Google Scholar

Department of Medicine, Rochester General Hospital, Rochester, New York 14620

Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14620

Find articles by Strope, G. in: PubMed | Google Scholar

Published May 1, 1972 - More info

Published in Volume 51, Issue 5 on May 1, 1972
J Clin Invest. 1972;51(5):1251–1263. https://doi.org/10.1172/JCI106920.
© 1972 The American Society for Clinical Investigation
Published May 1, 1972 - Version history
View PDF
Abstract

Studies of the metabolism of glutamine and glutamate by renal cortex slices from acidotic, alkalotic, and control rats were performed. 88-95% of the glutamine and 104-115% of the glutamate taken up from the medium could be accounted for by the products found. Acidosis increased glutamine uptake and conversion to ammonia, CO2, glucose, lactate, pyruvate, lipid, and protein. The increase in glutamine conversion to ammonia after acidosis could be completely accounted for by the associated increase in its conversion to glucose, glutamate, lactate, and pyruvate. When glutamate metabolism was examined, acidosis did not affect substrate uptake but did increase its conversion to ammonia, glucose, lactate, CO2, and lipid. The increase in 14CO2 from U-14C-glutamine and U-14C-glutamate found with cortex slices from acidotic animals could be explained by the CO2 production calculated to be associated with the enhanced conversion of these substrates to other products during acidosis. 14CO2 production from 1.2-14C-acetate was found to be significantly increased in alkalosis rather than acidosis. These studies suggest that in the rat, the rate at which glutamine is completely oxidized in the Krebs cycle is not a factor regulating renal ammonia production. A comparison of the effects of acidbase status on glutamine and glutamate metabolism suggests that either glutamine transport or glutamine transaminase activity are significantly increased by acidosis.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1251
page 1251
icon of scanned page 1252
page 1252
icon of scanned page 1253
page 1253
icon of scanned page 1254
page 1254
icon of scanned page 1255
page 1255
icon of scanned page 1256
page 1256
icon of scanned page 1257
page 1257
icon of scanned page 1258
page 1258
icon of scanned page 1259
page 1259
icon of scanned page 1260
page 1260
icon of scanned page 1261
page 1261
icon of scanned page 1262
page 1262
icon of scanned page 1263
page 1263
Version history
  • Version 1 (May 1, 1972): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts