Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Amendment history:
  • Correction (July 1972)

Research Article Free access | 10.1172/JCI106909

Sodium-potassium-activated adenosine triphosphatase of brain microsomes: modification of sodium inhibition by diphenylhydantoins

George J. Siegel and Beverly B. Goodwin

Department of Neurology, Mount Sinai School of Medicine of the City University of New York, New York 10029

Department of Physiology, Mount Sinai School of Medicine of the City University of New York, New York 10029

Institute for Medical Research and Studies, New York 10010

Find articles by Siegel, G. in: PubMed | Google Scholar

Department of Neurology, Mount Sinai School of Medicine of the City University of New York, New York 10029

Department of Physiology, Mount Sinai School of Medicine of the City University of New York, New York 10029

Institute for Medical Research and Studies, New York 10010

Find articles by Goodwin, B. in: PubMed | Google Scholar

Published May 1, 1972 - More info

Published in Volume 51, Issue 5 on May 1, 1972
J Clin Invest. 1972;51(5):1164–1169. https://doi.org/10.1172/JCI106909.
© 1972 The American Society for Clinical Investigation
Published May 1, 1972 - Version history
View PDF
Abstract

Effects of diphenylhydantoins on (Na+ + K+)-ATPase activity in rat and cat brain microsomes were studied. 5,5-diphenylhydantoin (DPH) in concentrations of 5-20 μg ml-1 produces an apparent stimulation of the rat brain (Na+ + K+)-activated ATPase of 55-65% in media containing 50 mM Na+, 0.15 mM K+, 3 mM Mg++, and 3 mM ATP. No effects are found on the Mg-ATPase. At constant K+ levels of 0.05 mmole/liter and 0.15 mmole/liter, increasing the Na+ concentration activates the enzyme similarly with and without DPH. However, Na+ concentrations greater than 5 mmoles/liter and 10 mmoles/liter, respectively, which are inhibitory in these low K+ media, produce less inhibition in the presence of DPH. In media containing 10 mM Na+, the K+ activation, on the other hand, is potentiated by DPH. In preparations from cat brain qualitatively similar results are obtained. No effect of DPH is seen on the inhibition produced by high K+ in low Na+ media. DPH produces an approximately constant apparent stimulation of 45% in the (Na+ + K+) increments when these ions are varied simultaneously at a fixed ratio of 150 Na+:1 K+ with cat brain extracts. 5-(p-hydroxyphenyl)-5-phenylhydantoin (HPPH) has the same potency as DPH in reducing the Na+ inhibition at high Na:K ratios. The hydantoins appear to act by decreasing the Na+ inhibition that occurs at high Na:K ratios.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1164
page 1164
icon of scanned page 1165
page 1165
icon of scanned page 1166
page 1166
icon of scanned page 1167
page 1167
icon of scanned page 1168
page 1168
icon of scanned page 1169
page 1169
Version history
  • Version 1 (May 1, 1972): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts