Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

The Metabolism of Proinsulin and Insulin by the Liver
A. H. Rubenstein, … , G. S. Getz, D. F. Steiner
A. H. Rubenstein, … , G. S. Getz, D. F. Steiner
Published April 1, 1972
Citation Information: J Clin Invest. 1972;51(4):912-921. https://doi.org/10.1172/JCI106886.
View: Text | PDF
Research Article

The Metabolism of Proinsulin and Insulin by the Liver

  • Text
  • PDF
Abstract

The removal of bovine proinsulin by the isolated perfused rat liver has been studied and the results compared with the removal of insulin. At high concentrations of insulin (> 180 ng/ml) the removal process was saturated and the t½ varied between 35 and 56 min. With low initial insulin levels the disappearance followed first-order kinetics, the mean regression coefficient being — 0.022, t½ 13.8 min, and the hepatic extraction 4.0 ml/min. The results with proinsulin were in striking contrast to these findings. At both high and low concentrations the hepatic removal of proinsulin was considerably slower, averaging 10-15 times less than that of insulin. Specific immunoassay techniques and gel filtration of samples taken from perfusions to which both labeled and unlabeled proinsulin had been added did not show conversion to either insulin or the C-peptide.

Authors

A. H. Rubenstein, L. A. Pottenger, M. Mako, G. S. Getz, D. F. Steiner

×

Usage data is cumulative from June 2021 through June 2022.

Usage JCI PMC
Text version 289 0
PDF 31 11
Scanned page 77 8
Citation downloads 2 0
Totals 399 19
Total Views 418
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts