Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106819

Changes in Fatty Acid Metabolism after Erythrocyte Peroxidation: Stimulation of a Membrane Repair Process

Bertram H. Lubin, Stephen B. Shohet, and David G. Nathan

Division of Hematology, Department of Medicine, Children's Hospital Medical Center, Boston, Massachusetts 02115

Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115

Find articles by Lubin, B. in: PubMed | Google Scholar

Division of Hematology, Department of Medicine, Children's Hospital Medical Center, Boston, Massachusetts 02115

Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115

Find articles by Shohet, S. in: PubMed | Google Scholar

Division of Hematology, Department of Medicine, Children's Hospital Medical Center, Boston, Massachusetts 02115

Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115

Find articles by Nathan, D. in: PubMed | Google Scholar

Published February 1, 1972 - More info

Published in Volume 51, Issue 2 on February 1, 1972
J Clin Invest. 1972;51(2):338–344. https://doi.org/10.1172/JCI106819.
© 1972 The American Society for Clinical Investigation
Published February 1, 1972 - Version history
View PDF
Abstract

To study certain membrane repair processes in human erythrocytes, vitamin E-deficient cells were incubated with hydrogen peroxide. The incorporation of exogenous fatty acid and the transfer of fatty acid from phosphatidylcholine and neutral lipid into phosphatidylethanolamine were examined using radioactive fatty acids.

Hydrogen peroxide stimulated the incorporation of fatty acid into all membrane phospholipids. The specific activity of phosphatidylethanolamine was increased disproportionately.

The lipids of the membranes of erythrocytes were labeled with saturated and unsaturated fatty acid. When these erythrocytes were subsequently incubated with hydrogen peroxide, both types of fatty acid were transferred from superficial erythrocyte neutral lipids into phosphatidylethanolamine. However, the unsaturated fatty acids of phosphatidylethanolamine were subsequently altered by hydrogen peroxide, whereas the saturated fatty acids were not. The cumulative effect of these processes was a relative decrease in unsaturated fatty acid and an increase in saturated fatty acid in the phosphatidylethanolamine of the erythrocyte membrane.

The net effect of these events represents the operation of repair processes which distort the usual fatty acid composition of erythrocyte membranes in the presence of H2O2. This distortion may contribute to membrane permeability changes which occur during peroxide exposure and which precede the eventual hemolysis of these cells.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 338
page 338
icon of scanned page 339
page 339
icon of scanned page 340
page 340
icon of scanned page 341
page 341
icon of scanned page 342
page 342
icon of scanned page 343
page 343
icon of scanned page 344
page 344
Version history
  • Version 1 (February 1, 1972): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts