Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106813

Effects of Elastase, Collagenase, and Papain on Structure and Function of Rat Lungs In Vitro

Waldemar G. Johanson Jr. and Alan K. Pierce

Pauline and Adolph Weinberger Laboratory for Cardiopulmonary Research, Department of Internal Medicine, University of Texas Southwestern Medical School at Dallas, Dallas, Texas 75235

Find articles by Johanson, W. in: PubMed | Google Scholar

Pauline and Adolph Weinberger Laboratory for Cardiopulmonary Research, Department of Internal Medicine, University of Texas Southwestern Medical School at Dallas, Dallas, Texas 75235

Find articles by Pierce, A. in: PubMed | Google Scholar

Published February 1, 1972 - More info

Published in Volume 51, Issue 2 on February 1, 1972
J Clin Invest. 1972;51(2):288–293. https://doi.org/10.1172/JCI106813.
© 1972 The American Society for Clinical Investigation
Published February 1, 1972 - Version history
View PDF
Abstract

Present concepts of the roles of collagen and elastin in lung elastic behavior and maintenance of lung structure have been largely inferred from anatomical observations or from studies of isolated fibers in vitro. Based on the intimate association of elastin and collagen it has been postulated that elastin contributes little to elastic behavior and that collagen is the major determinant of lung structure. Using clostridial collagenase, pancreatic elastase, and papain we have selectively degraded these fibers and studied the resulting changes in elastic behavior and structure of rat lungs in vitro.

Pressure-volume curves were recorded during continuous slow air inflation and deflation (10.5 ml/min) before and after the intratracheal instillation of 0.5 ml of control or enzyme solution. Surface tension-lowering activity of lavaged material was studied. All lungs were fixed inflated at 25 cm H2O pressure and whole lung sections were stained for elastin, collagen, and reticulin.

Collagenase produced a marked susceptibility to pleural rupture but did not alter elastic behavior or lung structure. Elastase and papain produced segments of lung with increased compliance; this change was not due to alteration in surface forces but was associated with decreased tissue elastic recoil. Histologically, altered tissue recoil correlated well with evidence of damaged elastin fibers. In contrast to previous concepts these results suggest that elastin is the major connective tissue determinant of lung structure and elastic behavior.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 288
page 288
icon of scanned page 289
page 289
icon of scanned page 290
page 290
icon of scanned page 291
page 291
icon of scanned page 292
page 292
icon of scanned page 293
page 293
Version history
  • Version 1 (February 1, 1972): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts