Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106809

Pathophysiology of Intense Physical Conditioning in a Hot Climate. I. MECHANISMS OF POTASSIUM DEPLETION

James P. Knochel, Larry N. Dotin, and Richard J. Hamburger

Renal Metabolic Laboratory, U. S. Army Institute for Surgical Research, Ft. Sam Houston, Texas 78234

Find articles by Knochel, J. in: PubMed | Google Scholar

Renal Metabolic Laboratory, U. S. Army Institute for Surgical Research, Ft. Sam Houston, Texas 78234

Find articles by Dotin, L. in: PubMed | Google Scholar

Renal Metabolic Laboratory, U. S. Army Institute for Surgical Research, Ft. Sam Houston, Texas 78234

Find articles by Hamburger, R. in: PubMed | Google Scholar

Published February 1, 1972 - More info

Published in Volume 51, Issue 2 on February 1, 1972
J Clin Invest. 1972;51(2):242–255. https://doi.org/10.1172/JCI106809.
© 1972 The American Society for Clinical Investigation
Published February 1, 1972 - Version history
View PDF
Abstract

Serial estimations of exchangeable 42K showed that six volunteer subjects undergoing intensive physical conditioning in a hot climate sustained a mean deficit of 517 mEq. This deficit occurred despite a daily potassium intake of 100 mEq. Simultaneous values for lean body mass rose suggesting that potassium deficiency was not the result of catabolism. Although sweating was the major avenue by which the deficit occurred, daily excretion of potassium into the urine when each subject was maximally deficient ranged from 46 to 75 mEq and thus was inappropriately high for potassium-depleted subjects. Despite high intakes of sodium and excretion of corresponding quantities into the urine, Na/K ratios in sweat were low thus indicating unsuppressed activity of aldosterone on sweat glands. Moreover, excretion and secretion of aldosterone and in many instances, plasma renin activity, appeared to be high with respect to sodium intake.

These findings suggest that intense physical work in the heat stimulates higher production of aldosterone than would occur in nonexercising subjects on similar sodium intakes. Similar to the phenomenon of mineralocorticoid escape, such overproduction of aldosterone in the presence of conditions permitting excretion of sodium into the urine could facilitate continued excretion of potassium by the kidney despite serious potassium depletion. As a consequence, the kidney played a role in the genesis of potassium depletion in these subjects.

In contrast to subjects undergoing conditioning in the summer months, potassium depletion did not occur in 16 subjects during identical training under cooler environmental conditions.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 242
page 242
icon of scanned page 243
page 243
icon of scanned page 244
page 244
icon of scanned page 245
page 245
icon of scanned page 246
page 246
icon of scanned page 247
page 247
icon of scanned page 248
page 248
icon of scanned page 249
page 249
icon of scanned page 250
page 250
icon of scanned page 251
page 251
icon of scanned page 252
page 252
icon of scanned page 253
page 253
icon of scanned page 254
page 254
icon of scanned page 255
page 255
Version history
  • Version 1 (February 1, 1972): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts