Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106703

Cable parameters, sodium, potassium, chloride, and water content, and potassium efflux in isolated external intercostal muscle of normal volunteers and patients with myotonia congenita

R. J. Lipicky, S. H. Bryant, and J. H. Salmon

Department of Pharmacology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45219

Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45219

Find articles by Lipicky, R. in: PubMed | Google Scholar

Department of Pharmacology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45219

Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45219

Find articles by Bryant, S. in: PubMed | Google Scholar

Department of Pharmacology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45219

Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45219

Find articles by Salmon, J. in: PubMed | Google Scholar

Published October 1, 1971 - More info

Published in Volume 50, Issue 10 on October 1, 1971
J Clin Invest. 1971;50(10):2091–2103. https://doi.org/10.1172/JCI106703.
© 1971 The American Society for Clinical Investigation
Published October 1, 1971 - Version history
View PDF
Abstract

In isolated fiber bundles of external intercostal muscle from each of 13 normal volunteers and each of 6 patients with myotonia congenita, some or all of the following were measured: concentrations of Na+, K+, and Cl-, extracellular volume, water content, K+ efflux, fiber size, fiber cable parameters, and fiber resting potentials.

Muscle from patients with myotonia congenita differed significantly (0.001 <P< 0.025) with respect to the following mean values (myotonia congenita vs. normal): the membrane resistance was greater (5729 vs. 2619 ω·cm2), the internal resistivity was less (75.0 vs. 123.2 ω·cm), the water content was less (788.2 vs. 808.2 ml/kg wet weight), and the mean resting potential was greater (68 vs. 61 mv).

No significant differences were found with respect to the following variables: K+ content (73.5 vs. 66.7 mEq/kg wet weight) and the calculated intracellular K+ concentration (215 vs. 191 mEq/liter fiber water), fiber capacitance (5.90 vs. 5.15 μf/cm2), Na+ content (97.7 vs. 94.1 mEq/kg wet weight), Cl- content (79.0 vs. 74.7 mEq/kg wet weight), mannitol extracellular volume (45.1 vs. 46.6 cc/100 g wet weight), and K+ efflux (23.2 vs. 21.5 moles × 10-12 cm-2·sec-1).

These abnormalities of skeletal muscle in human myotonia congenita are like those of skeletal muscle in goats with hereditary myotonia. We tentatively conclude that a decreased Cl- permeability accounts for some of the abnormal electrical properties of skeletal muscle in myotonia congenita.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2091
page 2091
icon of scanned page 2092
page 2092
icon of scanned page 2093
page 2093
icon of scanned page 2094
page 2094
icon of scanned page 2095
page 2095
icon of scanned page 2096
page 2096
icon of scanned page 2097
page 2097
icon of scanned page 2098
page 2098
icon of scanned page 2099
page 2099
icon of scanned page 2100
page 2100
icon of scanned page 2101
page 2101
icon of scanned page 2102
page 2102
icon of scanned page 2103
page 2103
Version history
  • Version 1 (October 1, 1971): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts