Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106674

Quantitative studies of the metabolism of chylomicron triglycerides and cholesterol by liver and extrahepatic tissues of sheep and dogs

E. N. Bergman, R. J. Havel, B. M. Wolfe, and T. Bøhmer

1Cardiovascular Research Institute and Department of Medicine, University of California School of Medicine, San Francisco, California 94122

Find articles by Bergman, E. in: JCI | PubMed | Google Scholar

1Cardiovascular Research Institute and Department of Medicine, University of California School of Medicine, San Francisco, California 94122

Find articles by Havel, R. in: JCI | PubMed | Google Scholar

1Cardiovascular Research Institute and Department of Medicine, University of California School of Medicine, San Francisco, California 94122

Find articles by Wolfe, B. in: JCI | PubMed | Google Scholar

1Cardiovascular Research Institute and Department of Medicine, University of California School of Medicine, San Francisco, California 94122

Find articles by Bøhmer, T. in: JCI | PubMed | Google Scholar

Published September 1, 1971 - More info

Published in Volume 50, Issue 9 on September 1, 1971
J Clin Invest. 1971;50(9):1831–1839. https://doi.org/10.1172/JCI106674.
© 1971 The American Society for Clinical Investigation
Published September 1, 1971 - Version history
View PDF
Abstract

Unanesthetized sheep and dogs, previously fitted with indwelling catheters in the aorta, lower vena cava, mesenteric, portal, left hepatic and jugular veins, were given constant intravenous infusions of lymph in which the chylomicron lipids were variously labeled with 3H or 14C. Para-aminohippuric acid was infused into the mesenteric venous catheter for measurement of portal and hepatic venous blood flow. In some animals, alternately labeled free fatty acids bound to albumin were mixed with the lymph to be infused. In both species, chylomicron triglyceride fatty acids were taken up in the region drained by the lower vena cava and portal vein and free fatty acids derived from hydrolysis of these triglycerides were extensively recycled in the blood. Direct uptake of triglyceride fatty acids also occurred in liver and accounted for about 10% of the total triglyceride fatty acids removed from the blood in sheep and 22% in dogs. In sheep, 10% and, in dogs, about 40% of these triglyceride-fatty acids were released into the blood as free fatty acids. The free fatty acids recycled from various regions accounted for a substantial fraction of the chylomicron fat eventually deposited in each tissue. Uptake of chylomicron cholesterol from the blood of sheep occurred primarily in liver and to a small extent in certain tissues drained by the portal vein. The results obtained, together with other available data, demonstrate that chylomicron triglycerides are removed primarily in extrahepatic tissues of both species, while the liver removes cholesterol contained in chylomicron “skeletons” from which most of the triglycerides have been removed. The quantitative differences between transport of chylomicron lipid in sheep and dogs may be related to known differences in the structure of their hepatic sinusoids.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1831
page 1831
icon of scanned page 1832
page 1832
icon of scanned page 1833
page 1833
icon of scanned page 1834
page 1834
icon of scanned page 1835
page 1835
icon of scanned page 1836
page 1836
icon of scanned page 1837
page 1837
icon of scanned page 1838
page 1838
icon of scanned page 1839
page 1839
Version history
  • Version 1 (September 1, 1971): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts