Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Redox state of free nicotinamide-adenine nucleotides in the cytoplasm and mitochondria of alveolar macrophages
Sheldon Mintz, Eugene D. Robin
Sheldon Mintz, Eugene D. Robin
Published June 1, 1971
Citation Information: J Clin Invest. 1971;50(6):1181-1186. https://doi.org/10.1172/JCI106595.
View: Text | PDF
Research Article

Redox state of free nicotinamide-adenine nucleotides in the cytoplasm and mitochondria of alveolar macrophages

  • Text
  • PDF
Abstract

Cytoplasmic free NAD+/NADH ratios have been calculated from lactate to pyruvate ratios, and mitochondrial NAD+/NADH ratios, have been calculated from β-hydroxybutyrate to acetoacetate ratios in isolated rabbit alveolar macrophages. In freshly harvested cells, assuming a pH of 7 for the two compartments, cytoplasmic NAD+/NADH averaged 709 ±293 (SD), and mitochondrial NAD+/NADH averaged 33.2 ±30.2, values which are significantly different. 30 min of air incubation in a relatively poorly buffered medium showed a significant reduction in calculated mitochondrial NAD+/NADH to 10.1 ±4.8. 30 min of exposure of cells to a hypoxic environment (equivalent to a nonventilated, perfused alveolus) caused significant reductions of NAD+/NADH in both compartments. Re-exposure of hypoxic cells to air produced a change toward normal in cytoplasmic NAD+/NADH but did not reverse mitochondrial abnormality. Uncertainties concerning the value of cytoplasmic and mitochondrial pH under control conditions and during experimental pertubations, limit absolute interpretation of NAD+/NADH ratios calculated from redox pairs, but the data suggest the following: (a) separate cytoplasmic and mitochondrial compartments for NAD+ and NADH exist in the alveolar macrophage; (b) brief periods of exposure to moderate hypoxia of the degree seen in clinical lung disease produce decreases in both cytoplasmic and mitochondrial NAD+/NADH; (c) the mitochondrial changes are less easily reversed than the cytoplasmic changes; (d) measurements of NAD+/NADH provide an early sensitive indication of biochemical abnormality; and (e) careful control of extracellular pH is required in studies involving experimental modifications of alveolar macrophage function.

Authors

Sheldon Mintz, Eugene D. Robin

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 106 3
PDF 50 9
Scanned page 229 0
Citation downloads 67 0
Totals 452 12
Total Views 464
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts