Studies of the rate of extrathyroidal conversion of thyroxine (T4) to 3,5,3′-triiodo-L-thyronine (T3) were carried out in rats. Total body homogenates were prepared and extracted with ethanol 48, 72, and 96 hr after the intravenous injection of 125I-T4. 131I-T3 was added, and the paper chromatographic purification of T3 was effected by serial elution and rechromatography in three paper and one thin-layer cycles. The ratio of 131I-T3 and 125I-T3 counting rates in the final chromatograms, which was identical in three different paper chromatography systems, was used to calculate the proportion of 125I-T3 to 125I-T4 in the original homogenates. In order to discount the effects of in vitro monodeiodination of T4 during extraction and chromatography, we killed control animals immediately after injection of 125I-T4 and processed them in a similar fashion to the experimental groups. The average ratio of 125I-T3 to 125I-T4 in carcass extracts of animals killed between 48 and 96 hr after isotopic injection was 0.08 whereas the average ratio of 125I-T3 to 125I-T4 in chromatograms of control animals was 0.01. On the basis of the proposed model, calculations indicated that about 17% of the secreted T4 was converted to T3. Assuming values cited in the literature for the concentration of nonradioactive T3 in rat plasma, these findings would suggest that about 20% of total body T3 is derived by conversion from T4. Moreover, since previous estimates have suggested that in the rat, T3 has about 3 to 5 times greater biologic activity than T4, these results also raise the possibility that the hormonal activity of T4 may be dependent in large part on its conversion to T3.
Harold L. Schwartz, Martin I. Surks, Jack H. Oppenheimer
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 108 | 4 |
47 | 15 | |
Scanned page | 266 | 6 |
Citation downloads | 77 | 0 |
Totals | 498 | 25 |
Total Views | 523 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.